A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of acute intrastriatal effects of paraoxon on in vivo dopaminergic neurotransmission using microdialysis in freely moving rats. | LitMetric

Characterization of acute intrastriatal effects of paraoxon on in vivo dopaminergic neurotransmission using microdialysis in freely moving rats.

Toxicol Lett

Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain.

Published: December 2018

Paraoxon (POX) is an extremely neurotoxic organophosphorous compound (OP) which main toxic mechanism is the irreversible inhibition of cholinesterase. Although the cholinergic system has always been linked as responsible for its acute effects, experimental studies have suggested that the dopaminergic system also may be a potential target for OPs. Based on this, in this study, the acute intrastriatal effects of POX on dopaminergic neurotransmission were characterized in vivo using brain microdialysis in freely moving rats. In situ administration of POX (5, 25 and 50 nmol, 60 min) significantly increased the striatal dopamine overflow (to 435 ± 79%, 1066 ± 120%, and 1861 ± 332%, respectively), whereas a lower concentration (0.5 nmol) did not affect dopamine levels. Administration of POX (25 nmol) to atropine (15 nmol) pretreated animals, produced an increase in dopamine overflow that was ∼63% smaller than those observed in animals not pretreated. Administration of POX (25 nmol) to mecamylamine (35 nmol) pretreated animals did not significantly affect the POX-induced dopamine release. Our results suggest that acute administration of POX increases the dopamine release in a concentration-dependent way, being this release dependent on acetylcholinesterase inhibition and mediated predominantly by the activation of striatal muscarinic receptors, once the muscarinic antagonist atropine partially blocks the POX-induced dopamine release.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2018.09.017DOI Listing

Publication Analysis

Top Keywords

administration pox
16
dopamine release
12
acute intrastriatal
8
intrastriatal effects
8
dopaminergic neurotransmission
8
microdialysis freely
8
freely moving
8
moving rats
8
dopamine overflow
8
pox 25 nmol
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!