Transcription factors that coordinate migration, differentiation or proliferation of enteric nervous system (ENS) precursors are not well defined. To identify novel transcriptional regulators of ENS development, we performed microarray analysis at embryonic day (E) 17.5 and identified many genes that were enriched in the ENS compared to other bowel cells. We decided to investigate the T-box transcription factor Tbx3, which is prominently expressed in developing and mature ENS. Haploinsufficiency for TBX3 causes ulnar-mammary syndrome (UMS) in humans, a multi-organ system disorder. TBX3 also regulates several genes known to be important for ENS development. To test the hypothesis that Tbx3 is important for ENS development or function, we inactivated Tbx3 in all neural crest derivatives, including ENS progenitors using Wnt1-Cre and a floxed Tbx3 allele. Tbx3 fl/fl; Wnt1-Cre conditional mutant mice die shortly after birth with cleft palate and difficulty feeding. The ENS of mutants was well-organized with a normal density of enteric neurons and nerve fiber bundles, but small bowel glial cell density was reduced. Despite this, bowel motility appeared normal. Furthermore, although Tbx3 is expressed in cardiac neural crest, Tbx3 fl/fl; Wnt1-Cre mice had structurally normal hearts. Thus, loss of Tbx3 within neural crest has selective effects on Tbx3-expressing neural crest derivatives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6431575 | PMC |
http://dx.doi.org/10.1016/j.ydbio.2018.09.017 | DOI Listing |
Development
January 2025
Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Heterozygous variants in SOX10 cause congenital syndromes affecting pigmentation, digestion, hearing, and neural development, primarily attributable to failed differentiation or loss of non-skeletal neural crest derivatives. We report here an additional novel requirement for Sox10 in bone mineralization. Neither crest- nor mesoderm-derived bones initiate mineralization on time in zebrafish sox10 mutants, despite normal osteoblast differentiation and matrix production.
View Article and Find Full Text PDFCurr Protoc
January 2025
Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana.
Human induced pluripotent stem cell (hiPSC)-based disease modeling can be successfully recapitulated to mimic disease characteristics across various human pathologies. Glaucoma, a progressive optic neuropathy, primarily affects the retinal ganglion cells (RGCs). While multiple groups have successfully generated RGCs from non-diseased hiPSCs, producing RGCs from glaucomatous human samples holds significant promise for understanding disease pathology by revealing patient-specific disease signatures.
View Article and Find Full Text PDFInt J Surg Case Rep
January 2025
Department of Thoracic surgery, National University Hospital, Damascus University, Damascus, Syria.
Introduction: Mediastinal paragangliomas are rare neoplasms arising from extra-adrenal neural crest cells, presenting as either functional or nonfunctional tumors. Clinical manifestations range from catecholamine-related symptoms to physical compression effects. Accurate recognition of these tumors is crucial for diagnosis and management due to their rarity and association with vital mediastinal structures.
View Article and Find Full Text PDFTheranostics
January 2025
Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
Disrupted hippocampal functions and progressive neuronal loss represent significant challenges in the treatment of Alzheimer's disease (AD). How to achieve the improvement of pathological progression and effective neural regeneration to ameliorate the intracerebral dysfunctional environment and cognitive impairment is the goal of the current AD therapy. We examined the therapeutic potential of clinical-grade human derived dental pulp stem cells (hDPSCs) in cognitive function and neuropathology in AD.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Oral and Maxillofacial Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
Background And Objectives: For the planning of surgical procedures involving the bony reconstruction of the mandible, the autologous iliac crest graft, along with the fibula graft, has become established as a preferred donor region. While computer-assisted planning methods are increasingly gaining importance, the necessary preparation of geometric data based on CT imaging remains largely a manual process. The aim of this work was to develop and test a method for the automated segmentation of the iliac crest for subsequent reconstruction planning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!