2-Cys Peroxiredoxins Participate in the Oxidation of Chloroplast Enzymes in the Dark.

Mol Plant

Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avenida Américo Vespucio 49, 41092 Sevilla, Spain. Electronic address:

Published: November 2018

Most redox-regulated chloroplast enzymes are reduced during the day and oxidized during the night. While the reduction mechanism of light-dependent enzymes is well known, the mechanism mediating their oxidation in the dark remains unknown. The thiol-dependent peroxidases, 2-Cys peroxiredoxins (Prxs), play a key role in light-dependent reduction of chloroplast enzymes. Prxs transfer reducing equivalents of thiols to hydrogen peroxide, suggesting the participation of these peroxidases in enzyme oxidation in the dark. Here, we have addressed this issue by analyzing the redox state of well-known redox-regulated chloroplast enzymes in response to darkness in Arabidopsis thaliana mutants deficient in chloroplast-localized Prxs (2-Cys Prxs A and B, Prx IIE, and Prx Q). Mutant plants lacking 2-Cys Prxs A and B, and plants overexpressing NADPH-dependent thioredoxin (Trx) reductase C showed delayed oxidation of chloroplast enzymes in the dark. In contrast, the deficiencies of Prx IIE or Prx Q exerted no effect. In vitro assays allowed the reconstitution of the pathway of reducing equivalents from reduced fructose 1,6-bisphosphatase to hydrogen peroxide mediated by Trxs and 2-Cys Prxs. Taken together, these results suggest that 2-Cys Prxs participate in the short-term oxidation of chloroplast enzymes in the dark.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2018.09.005DOI Listing

Publication Analysis

Top Keywords

chloroplast enzymes
20
2-cys prxs
16
oxidation chloroplast
12
enzymes dark
12
2-cys peroxiredoxins
8
oxidation dark
8
reducing equivalents
8
hydrogen peroxide
8
prxs 2-cys
8
prx iie
8

Similar Publications

This study aimed to explore the mechanism by which Zn retards Fe toxicity by analyzing the morphological, photosynthetic, and chloroplast physiological parameters of wheat seedlings treated with either single or combined Zn and Fe. Different behavior of the seedlings was observed under untreated and treated conditions. The most discriminating quantitative traits were associated with leaf area, biomass dry mass and fresh mass, net photosynthetic rate, intercellular CO concentration, stomatal conductance, transpiration rate of seedlings, Hill reaction, Mg-ATPase and Ca-ATPase activities, malondialdehyde and O contents, and glutathione reductase, ascorbate peroxidase, peroxidase, and superoxide dismutase activities and their gene expression in the seedling chloroplast.

View Article and Find Full Text PDF

Ion homeostasis and coordinated salt tolerance mechanisms in a barley (Hordeum vulgare L.)doubled haploid line.

BMC Plant Biol

January 2025

Shanghai Key Laboratory of Agricultural Genetics and Breeding, Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms of Ministry of Agriculture and Rural Affairs (Shanghai), Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China.

Salinization poses a significant challenge in agriculture. Identifying salt-tolerant plant germplasm resources and understanding their mechanisms of salt tolerance are crucial for breeding new salt-tolerant plant varieties. However, one of the primary obstacles to achieving this goal in crops is the physiological complexity of the salt-tolerance trait.

View Article and Find Full Text PDF

Plant chloroplasts store starch during the day, which acts as a source of carbohydrates and energy at night. Starch granule initiation relies on the elongation of malto-oligosaccharide primers. In Arabidopsis thaliana, PROTEIN TARGETING TO STARCH 2 (PTST2) and STARCH SYNTHASE 4 (SS4) are essential for the selective binding and elongation of malto-oligosaccharide primers, respectively, and very few granules are initiated in their absence.

View Article and Find Full Text PDF

A Comprehensive Analysis In Silico of Genes in Maize Revealed Their Potential Role in Response to Abiotic Stress.

Plants (Basel)

December 2024

Scientific Observing and Experimental Station of Maize in Plain Area of Southern Region, Ministry of Agriculture and Rural Affairs, School of Life Sciences, Nantong University, Nantong 226019, China.

β-ketoacyl-CoA synthase (KCS) enzymes play a pivotal role in plants by catalyzing the first step of very long-chain fatty acid (VLCFA) biosynthesis. This process is crucial for plant development and stress responses. However, the understanding of genes in maize remains limited.

View Article and Find Full Text PDF

The redox state of the plastoquinone (PQ) pool in thylakoids plays an important role in the regulation of chloroplast metabolism. In the light, the PQ pool is mostly reduced, followed by oxidation after light cessation. It has been believed for a long time that dark oxidation depends on oxygen, although the precise mechanisms of the process are still unknown and debated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!