A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of the Nitrogen Incorporation on the Microstructure and Photoelectric Properties of N Type Nanocrystalline Silicon Thin Films. | LitMetric

N type silicon-rich nanocrystalline-SiN(x) ∶ H films were prepared by plasma enhanced chemical vapor deposition technique by changing NH3 flow rate. The effect of nitrogen incorporation on the microstructure and photoelectric properties of the thin films were characterized by Raman, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectra, and Hall effect measurement. The results indicated that with the increasing NH3, a phase transition from microcrystalline to amorphous silicon occured. Transmission electron microscope observation revealed that the size of silicon quantum dots could be adjusted by varying the flow rate of NH3. The microstructure order of the films reduced with increasing the flow rate of NH3, while the optical band gap increased, and the optical band tail became narrow. Meanwhile, Si—N bonds density increased and P doping was blocked. I-V testing results showed that with increasing NH3, the conductivity of films first decreased compared with nanocrystalline-Si and then increased. These behaviors reveal a competition in the mechanisms controlling the conductivity. However, with further increasing NH3, the conductivity decreased significantly due to rapid carrier recombination on the amorphous net structure.

Download full-text PDF

Source

Publication Analysis

Top Keywords

flow rate
12
increasing nh3
12
nitrogen incorporation
8
incorporation microstructure
8
microstructure photoelectric
8
photoelectric properties
8
thin films
8
rate nh3
8
optical band
8
nh3 conductivity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!