Effect of FeO NPs application on fluoride (F) accumulation efficiency of Prosopis juliflora.

Ecotoxicol Environ Saf

Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali Tonk, Rajasthan 304022, India. Electronic address:

Published: December 2018

Fluoride (F) pollution is a major worldwide problem affecting approximately 200 million people. Hyperaccumulator plant Prosopis juliflora has been used for the removal of F from contaminated soils; however it's low F accumulation efficiency and low biomass limits the phytoremediation efficiency. Present study deals with enhancement of F uptake efficiency of plant P. juliflora through iron oxide nanoparticles (FeO NPs) application for remediation of agricultural soils. For the study, FeO NPs were synthesized through green route using waste jojoba leaves. The application of FeO NPs significantly increased the shoot and root length of plant P. juliflora. FeO NPs treatment also promoted the F accumulation in shoot and root tissues upto 28.43 and 34.64 mg kg, respectively. Microscopic (FESEM and light microscopic) and EDX spectrum analysis of plant tissues confirmed the accumulation and translocation of FeO NPs and F in plant tissues This nano-phytoremediation approach could be a better option for F remediation for agricultural and commercial purpose.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2018.09.103DOI Listing

Publication Analysis

Top Keywords

feo nps
24
nps application
8
accumulation efficiency
8
prosopis juliflora
8
plant juliflora
8
remediation agricultural
8
shoot root
8
plant tissues
8
feo
6
plant
5

Similar Publications

In this study, we report the synthesis of iron oxide nanoparticles (FeONPs) using micro-emulsion-hydrothermal method. By adjusting the synthesis temperature, we successfully produced FeO nanorods and nanospheres. In addition, the 2-octanol, and the surfactant cetyltrimethylammonium bromide served as a solvent in the synthesis process.

View Article and Find Full Text PDF

A microbial fuel cell (MFC) is a modern, environmentally friendly, and cost-effective energy conversion technology that utilizes renewable organic waste as fuel, converting stored chemical energy into usable bioelectricity in the presence of a biocatalyst. Despite advancements in MFC technology, several challenges remain in optimizing power production efficiency, particularly regarding anode materials and modifications. In this study, low-cost biosynthesized iron oxide nanoparticles (FeO NPs) were coated with a polyaniline (PANI) conducting matrix to synthesize hybrid FeO/PANI binary nanocomposites (NCs) as modified MFC anodes via an in-situ polymerization process.

View Article and Find Full Text PDF

Unveiling the crucial role of iron oxide transformation in simultaneous immobilization of nanoplastics and organic matter.

Sci Total Environ

January 2025

State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.

Nanoplastics (NPs) have been found in natural environments. However, the sequestration of NPs and natural organic matter (NOM) coupled with the Fe(III) hydrolysis and subsequent iron oxides transformation remains unclear. Here, we investigated the behaviors of NPs during the dynamic transformation process of iron oxides in the presence of humic acids (HA).

View Article and Find Full Text PDF

Background: Antimicrobial resistance (AMR) presents a serious threat to health, highlighting the urgent need for more effective antimicrobial agents with innovative mechanisms of action. Nanotechnology offers promising solutions by enabling the creation of nanoparticles (NPs) with antibacterial properties. This study aimed to explore the antibacterial, anti-biofilm, and anti-virulence effects of eco-friendly synthesized α-Fe₂O₃ nanoparticles (α-Fe₂O₃-NPs) against pathogenic bacteria.

View Article and Find Full Text PDF

Vacancy-Activated Surface Reconstruction of Perovskite Nanofibers for Efficient Lattice Oxygen Evolution.

ACS Appl Mater Interfaces

December 2024

School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.

Article Synopsis
  • The study focuses on enhancing the oxygen evolution reaction (OER) in perovskites by inducing surface reconstruction through trace Ce-doped LaCeNiFeO nanofibers (LCNF-NFs), which improves their catalytic activity.* -
  • High oxygen vacancies in the LCNF-NFs lower the reconstruction potential and increase electrolyte access, leading to significant generation of self-reconstructed electroactive Ni/FeO(OH) species on the surface.* -
  • The restructured LCNF-NFs demonstrated superior performance with a lower Tafel slope of 50.12 mV dec and a reduced overpotential of 342.3 mV, making them highly efficient compared to conventional electrocatalysts.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!