This investigation is based on experimental data to deeply understand the unusual adsorption behavior of the flexible MIL-53s in aqueous solution. In contrast to the strongly flexible MIL-53(Cr) and MIL-53(Al) with large pore form (lp) in water and in their anhydrous state, MIL-53(Fe) exhibits narrow pore form (np) or very narrow pore form (vnp), indicating that breathing effect depends on the nature of the metal. Sulfamethoxazole (SMZ) adsorption results demonstrated that the maximum adsorption capacities predicted by Langmuir model were 1.85, 1.78 and 0.314 mmol/g for MIL-53(Cr), MIL-53(Al), and MIL-53(Fe), respectively. The adsorption equilibrium was rapidly reached within 60 min and the kinetic data best fitted with the pseudo second order model. The lp form of MIL-53(Cr) and MIL-53(Al) in aqueous solution provided the easy entrance for contaminants, lead to lower binding energy and caused modifications of the hydrophobic/hydrophilic character, which all enhanced their adsorption capacities for SMZ. However, the np form of MIL-53(Fe) with small inner pores and hydrophilicity compromised its adsorption capacity for SMZ. The experimental results revealed electrostatic interactions, hydrogen bonding, and π-π interaction/stacking contributed to the adsorption of SMZ on MIL-53s as well. In summary, the complexation of different metal nodes to MOFs is accompanied by the diversity of properties, which significantly affect their adsorptive performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2018.09.090 | DOI Listing |
Sci Rep
January 2025
Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.
The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK.
J Colloid Interface Sci
January 2025
College of Materials Science and Engineering, Hunan University, Changsha 410082 PR China. Electronic address:
Although MXenes have attracted significant attention across diverse fields, they exhibit a pronounced susceptibility to oxidation in aqueous environments, with oxidation significantly accelerated in the presence of transition metal ions (TMI) such as Fe and Cu. This limitation impedes the synthesis of transition metal compounds/MXene-based composites and their potential for functional applications. In this study, we elucidate the mechanism of accelerated oxidation of TiCT is that Fe promotes the electron loss in TiCT, thus leading to an increased production of hydroxyl radicals (OH) to oxidize TiCT.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041 China. Electronic address:
We developed antibiotic-based micelles with bone-targeting and charge-switchable properties (P-CASMs) for treating infectious osteomyelitis. The amphiphilic molecules are formed by combining ciprofloxacin (CIP) with ligand 1 through a mild salifying reaction, and spontaneously self-assemble into antibiotic-based micelles (ASMs) in aqueous solution. Acrylate groups on ligand 1 enable cross-linking of ASMs with pentaerythritol tetra(mercaptopropionate) via a click reaction, forming pH-sensitive cross-linked micelles (CASMs).
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA. Electronic address:
This study investigated the regenerability of anion exchange resins for per- and polyfluoroalkyl substances (PFAS), focusing on the interaction between regenerant composition and resin characteristics. The influence of salt type and concentration on PFAS solubility revealed a general decline in perfluorohexane sulfonate (PFHxS) solubility with increased salt concentrations, most strongly with KCl followed by NaCl and NHCl. Mixed solubility results were observed for perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!