Aerobic granular sludge (AGS) is a promising technology for wastewater treatment. However, the success of the process depends on the formation of stable granular biomass, which is associated with the microbiological aspects of the sludge and reactor operating conditions. In this study, the development of AGS from a poor nitrifying flocculent sludge obtained in a sewage treatment plant designed only for organic matter removal was assessed in a sequencing batch reactor (SBR) under tropical climate conditions (temperatures of 28 ± 4 °C). The results showed that, despite the alternating anaerobic-aerobic conditions during the granules selection phase under high sludge washout rates (low settling time), readily biodegradable organic matter was mainly removed aerobically. The formed granules were unstable, exhibiting a substantial amount of filaments and pasty consistency. The biomass characteristics (e.g., sludge volume index, density, diameter and settling velocity) were negatively impacted as complete granulation was reached, while biomass loss and degranulation became inevitable. Poor nitrification and no enhanced biological phosphate removal (EBPR) were observed. Implementation of a new operational strategy incorporating an adaptation of the seed sludge under reduced washout conditions (high settling time) prior to the granules selection stage enabled most of the influent organics to be removed anaerobically. Besides allowing a feast-famine regime to be established in the reactor, the sludge acclimation phase favoured the development of slow-growing organisms and suppressed the appearance of filamentous-like structures. Fast-settling granules with regular shape remained stable in the long-term, while high ammonium (>95%) and total nitrogen removal (>90%) was obtained. However, EBPR activity was very unstable, most likely due to the high temperatures. The findings of this study are important for the spreading of the AGS technology worldwide, especially in developing countries where the conditions are different in all aspects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2018.09.072 | DOI Listing |
Lett Appl Microbiol
January 2025
Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India.
Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.
View Article and Find Full Text PDFBioresour Technol
January 2025
School of Resources and Environment, Hubei Key Laboratory of Regional Development and Environmental Response, Hubei University, Wuhan 430062, China.
In aerobic granular sludge (AGS) system, N-acyl homoserine lactones (AHLs) can effectively regulate the community structure and control filamentous bulking. It would be economically feasible to make mature granules into AHLs-rich AGS extract (AE) to replace synthesized AHLs. In this study, two SBRs were run in a fully aerobic environment and a short cycle (4 h) to culture AGS: R1 with AE adding; R2 served as control.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Laboratory of Molecular Microbiology and Food Safety, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China. Electronic address:
Salmonella presents a significant threat to the health of animals and humans, especially with the rise of strains resistant to multiple drugs. This highlights the necessity for creating sustainable and efficient practical approaches to managing salmonellosis. The most recent and safest approach to combat antimicrobial resistance-associated infections is lytic bacteriophages.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China; Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, 511517, China. Electronic address:
Zero-valent iron (ZVI) has been confirmed in enhancing methane production by improving interspecies electron transfer during anaerobic digestion (AD) of waste activated sludge (WAS). In this study, we suppose that sulfidated zero-valent iron (S-ZVI), a semiconductor material, has better property of electron transfer in AD process. Based on two-phase anaerobic digestion process, nitrite and S-ZVI were used separately for improving acidogenic phase and methanogenic phase of anaerobic sludge digestion.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Changzhou Key Laboratory of Biomass Green, Safe and High Value Utilization Technology, Institute of Urban and Rural Mining, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou, 213164, China; National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No.21 Gehu Road, Wujin District, Changzhou, 213164, China. Electronic address:
Erythromycin is becoming one of the most common contaminants detected in surface water and wastewater, which poses a potential risk to ecological systems and human health. Until now, there is still no effective way to eliminate it. Herein, a novel and efficient erythromycin-degrading fungus Peniophora incarnata F1, capable of utilizing erythromycin as its sole source of carbon and energy, was isolated from contaminated sludge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!