In order to improve the detection sensitivity and spectral characteristic of laser-induced breakdown spectroscopy (LIBS), re-heating orthogonal dual-pulse configuration is adopted to analyze Fe, Pb, Ca and Mg contained in the sample and soil sample contained different concentrations of heavy mental Cr. Variation relationship between spectral intensity, signal-to-background(SBR) of four characteristic spectral lines FeⅠ:404.581 nm,PbⅠ:405.78 nm,CaⅠ:422.67 nm and MgⅠ:518.361 nm and time interval of two laser pulses is discussed, the best time interval of two laser pulses is obtained 1.0 μs. In the condition of single pulse and dual-pulse, the enhancement factor of spectral intensity of four characteristic spectral lines FeⅠ:404.581 nm,PbⅠ:405.78 nm,CaⅠ:422.67 nm and MgⅠ:518.361 nm is respectively 2.23,2.31,2.42 and 2.10; The time evolution characteristic of spectral intensity of characteristic spectral lines FeⅠ:404.581 nm and CaⅠ:422.67 nm is considered, and also the variation relationship between spectral acquisition delay time and SBR of four characteristic spectral lines, dual-pulse can prolong decay time of spectral intensity and improve the SBR of characteristic spectral lines; time evolution characteristic of plasma temperature and electron density is compared in the condition of single pulse and dual-pulse, maximum elevation of plasma temperature is found to be 730 K, and the maximum increase of electron density is 1.8×1016 cm-3. The limits of detection of heavy mental Cr are obtained 38 and 20 μg·g-1 respectively in condition of single and double pulse, limit of detection of Cr is reduced approximately 2 times by the condition of re-heating orthogonal dual pulse. Results above indicate that re-heating orthogonal dual-pulse can improve detection sensibility and spectral characteristic of LIBS technique, which provides an effective method for decreasing the limit of detection of elements.
Download full-text PDF |
Source |
---|
Spectrochim Acta A Mol Biomol Spectrosc
January 2025
School of Food Science and Engineering, Hainan University, Haikou 570228 PR China; Hainan Institute for Food Control, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 570314 PR China. Electronic address:
NIR spectroscopy is widely used in chemical analysis, agricultural science, food safety, and other fields, but its high dimensionality and data redundancy bring analytical challenges. This study aims to compare the performance of different wavelength selection methods in NIR spectral datasets with different dimensionalities to provide a reference for researchers. The wavelength selection methods in this study were classified into four categories according to their principles, which are partial least squares (PLS) parameter-based methods, intelligent optimization algorithms (IOA)-based methods, model population analysis (MPA)-based methods and wavelength interval selection (WIS) methods.
View Article and Find Full Text PDFPhys Eng Sci Med
January 2025
School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100191, China.
Extracorporeal shock wave therapy (ESWT) achieves its therapeutic purpose mainly through the biological effects produced by the interaction of shock waves with tissues, and the accurate measurement and calculation of the mechanical parameters of shock waves in tissues are of great significance in formulating the therapeutic strategy and evaluating the therapeutic effect. This study utilizes the approach of implanting flexible polyvinylidene fluoride (PVDF) vibration sensors inside the tissue-mimicking phantom of various thicknesses to capture waveforms at different depths during the impact process in real time. Parameters including positive and negative pressure changes (P, P), pulse wave rise time ([Formula: see text]), and energy flux density (EFD) are calculated, and frequency spectrum analysis of the waveforms is conducted.
View Article and Find Full Text PDFTo accurately model the specific detection characteristics of spectral sensors based on linear variable filters (LVFs) within an optical design tool, it is essential to consider crucial position-variable spectral properties, such as peak transmittance, central wavelength, half width, or slope steepness. In this context, we propose a straightforward approach, integrating a dynamic link library (DLL) containing all position-dependent spectral properties of the LVF into a commercial optical design software. Exemplary investigations are conducted for an LVF with a detection range of 450-850 nm.
View Article and Find Full Text PDFMol Immunol
January 2025
Laboratory of Oncology, The First Medical Center of Chinese PLA General Hospital, Beijing, China; Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China. Electronic address:
Purpose: To determine the characteristic changes of peripheral blood T cells and identify potential biomarkers that associated with the clinical efficacy of combined immunotherapy and anti-angiogenic therapy in patients with advanced squamous non-small cell lung cancer (NSCLC).
Methods: We performed a comprehensive immunological assessment of peripheral blood mononuclear cell samples from advanced squamous NSCLC patients before and after combination of immunotherapy (Camrelizumab) and anti-angiogenic therapy (Apatinib) using spectral flow cytometry. Correlations between these immunological features and clinical efficacy were analyzed.
Int J Chron Obstruct Pulmon Dis
January 2025
Department of Cardiology, Respiratory Medicine and Intensive Care, University Hospital Augsburg, Augsburg, Germany.
Background: Chronic obstructive pulmonary disease (COPD) affects breathing, speech production, and coughing. We evaluated a machine learning analysis of speech for classifying the disease severity of COPD.
Methods: In this single centre study, non-consecutive COPD patients were prospectively recruited for comparing their speech characteristics during and after an acute COPD exacerbation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!