In situ surface-enhanced Raman spectra of the headspace above cultures of six bacterial species showed strong characteristic bands from chemisorbed methyl sulfide. This marker compound is created by dissociation of dimethyl disulfide (DMDS), a fermentative metabolite of bacteria, on the surface of the enhancing Au or Ag nanoparticle films. Kinetic binding plots of media spiked with DMDS and of live cultures showed that the Au-based substrates were more suitable for the rapid detection of bacteria than Ag-based substrates. For E. coli DH5α, the sensitivity limit for headspace SERS detection was 1.5×10  CFU mL , which corresponded to detection 15 min after inoculation of the growth medium. Since the metabolites are only produced by viable bacteria, antibiotic (gentamicin) treatment stopped the normal signal growth of the marker peak. This work is a promising step towards rapid bedside detection of bacterial infections and rapid screening of antibiotics against bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201808185DOI Listing

Publication Analysis

Top Keywords

surface-enhanced raman
8
detection
5
raman spectroscopy
4
spectroscopy detection
4
detection metabolic
4
metabolic product
4
product headspace
4
headspace live
4
live bacterial
4
bacterial cultures
4

Similar Publications

Operando Photoelectrochemical Surface-Enhanced Raman Spectroscopy: Interfacial Mechanistic Insights and Simultaneous Detection of Patulin.

Anal Chem

January 2025

Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

Comprehending the biosensing mechanism of the biosensor interface is crucial for sensor development, yet accurately reflecting interfacial interactions within actual detection environments remains an unsolved challenge. An operando photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) biosensing platform was developed, capable of simultaneously capturing photocurrent and SERS signals, allowing operando characterization of the interfacial biosensing behavior. Porphyrin-based MOFs (Zr-MOF) served as bifunctional nanotags, providing a photocurrent and stable Raman signal output under 532 nm laser irradiation.

View Article and Find Full Text PDF

Collaborative integration of SERS and QCM sensing for label-free multi-component gas detection.

Talanta

January 2025

Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044, China; School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing, 400044, China. Electronic address:

The effective qualitative and quantitative detection of mixed components of volatile organic compounds (VOCs) with similar molecular structures has always been a challenge and hotpoint in the research. A novel quartz-crystal microbalance (QCM) nanocomposite sensor integrated with a surface-enhanced Raman scattering (SERS) detection platform for multi-component gas analysis was proposed and fabricated in this paper. MIL-100 (Fe)/PAN composite fibers were developed on QCM via electrospinning of polyacrylonitrile (PAN) and hydrothermal synthesis, addressing the integration issues of MIL-100 particles in devices while maintaining high specific surface area.

View Article and Find Full Text PDF

Porous Nanoframe Based Plasmonic Structure With High-Density Hotspots for the Quantitative Detection of Gaseous Benzaldehyde.

Small

January 2025

Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, China.

Owing to its high sensitivity, surface-enhanced Raman scattering (SERS) has immense potential for the identification of lung cancer from the variation in volatile biomarkers in the exhaled gas. However, two prevailing factors limit the application of SERS: 1) the adsorption of target molecules into SERS hotspots and 2) the detection specificity in multiple interference environments. To improve the density of the SERS hotspots, 3D Au@Ag-Au particles are prepared in a porous nanoframes (PPFs) based plasmonic structure, which facilitated a richer local electromagnetic field distribution among the Au nanocubic (NC) cores, Au-Ag porous nanoframes, and Au nanoparticles, thereby promoting the adsorption probability of gaseous aldehydes into the hotspots.

View Article and Find Full Text PDF

This study reports the synthesis of plasmonic hot nanogap networks-in-triangular nanoframes (NITNFs), featuring narrow intraparticle nanogap networks embedded within triangular nanoframes. Starting from Au nanotriangles, Pt NITNFs are synthesized through a cascade reaction involving simultaneous Pt deposition and Au etching in a one-pot process. The Pt NITNFs are then transformed into plasmonically active Au NITNFs via Au coating.

View Article and Find Full Text PDF

Polyethyleneimine-assisted one-pot synthesis of Au nanodendrites on carbon nanotube sheet as an efficient SERS substrate.

Mikrochim Acta

January 2025

College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Jiangbei New Area, Nanjing, 211816, Jiangsu, China.

A polyethyleneimine (PEI)-assisted simple and efficient one-pot hydrothermal reduction method is reported to prepare high-quality gold nanodendrites (AuNDs) on a carbon nanotube (CNT) sheet. We observed that the prepared AuNDs have a well-defined backbone-multiple branching structure. With the systematical investigation of the growth mechanism, it was found that the bromide (Br) ion concentration has an essential effect on the formation of AuNDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!