Direct electrical quantification of glucose and asparagine from bodily fluids using nanopores.

Nat Commun

Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, 9747 AG, The Netherlands.

Published: October 2018

Crucial steps in the miniaturisation of biosensors are the conversion of a biological signal into an electrical current as well as the direct sampling of bodily fluids. Here we show that protein sensors in combination with a nanopore, acting as an electrical transducer, can accurately quantify metabolites in real time directly from nanoliter amounts of blood and other bodily fluids. Incorporation of the nanopore into portable electronic devices will allow developing sensitive, continuous, and non-invasive sensors for metabolites for point-of-care and home diagnostics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173770PMC
http://dx.doi.org/10.1038/s41467-018-06534-1DOI Listing

Publication Analysis

Top Keywords

bodily fluids
12
direct electrical
4
electrical quantification
4
quantification glucose
4
glucose asparagine
4
asparagine bodily
4
fluids nanopores
4
nanopores crucial
4
crucial steps
4
steps miniaturisation
4

Similar Publications

Deciphering the role of neuropeptides as biomarkers for early diagnosis of Parkinson's disease.

Life Sci

January 2025

Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V. M. Road, Vile Parle (W), Mumbai, India. Electronic address:

Parkinson's disease (PD) is a neurological condition and is characterized by both motor and non-motor symptoms. Early diagnosis is essential for effective therapy and management; nevertheless, present diagnostic methods are frequently insufficient and primarily rely on clinical symptoms that appear later in the disease. Neuropeptides, such as alpha-synuclein (α-syn), Substance P (SP), neurotensin (Nts), Neuropeptide Y (NPY), and somatostatin (SST), exhibit significant potential as biomarkers for the early identification of Parkinson's disease (PD).

View Article and Find Full Text PDF

Wood membrane: A sustainable electrochemical platform for enzyme-free and pretreatment-free monitoring uric acid in bodily fluids.

Anal Chim Acta

January 2025

School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China. Electronic address:

The detection of biomarkers is crucial for assessing disease status and progression. Uric acid (UA), a common biomarker in body fluids, plays an important role in the diagnosis and monitoring of conditions such as hyperuricemia, chronic kidney disease, and cardiovascular disease. However, the low concentration of UA in non-invasive body fluids, combined with numerous interfering substances, makes its detection challenging.

View Article and Find Full Text PDF

Extracellular nanoparticles (EPs) are a subject of increasing interest for their biological role as mediators in cell-cell communication; however, their harvesting and assessment from bodily fluids are challenging, as processing can significantly affect samples. With the aim of minimizing processing artifacts, we assessed the number density () and hydrodynamic diameter () of EPs directly in diluted plasma and blood using the following recently developed technique: interferometric light microscopy (ILM). We analyzed 613 blood and plasma samples from human patients with inflammatory bowel disease (IBD), collected in trisodium citrate and ethylenediaminetetraacetic acid (EDTA) anticoagulants, and 163 blood and plasma samples from canine patients with brachycephalic obstructive airway syndrome (BOAS).

View Article and Find Full Text PDF

Enhanced Anti-Interference Photoelectrochemical DNA Bioassay: Grafting a Peptide-Conjugated Hairpin DNA Probe on a COF-Based Photocathode.

ACS Sens

January 2025

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

Precise and sensitive analysis of specific DNA in actual human bodily fluids is crucial for the early diagnosis of major diseases and for a deeper understanding of DNA functions. Herein, by grafting a peptide-conjugated hairpin DNA probe to a covalent organic framework (COF)-based photocathode, a robust anti-interference photoelectrochemical (PEC) DNA bioassay was explored, which could specifically resist potential interference from nonspecific proteins and reducing species. Human immunodeficiency virus (HIV) DNA was used as the target DNA (tDNA) for the PEC DNA bioassay.

View Article and Find Full Text PDF

Targeting estrogen-related receptors to mitigate tumor resistance: A comprehensive approach to bridging cellular energy metabolism.

Biochim Biophys Acta Rev Cancer

December 2024

Fujian Clinical Research Center for Gynecological Oncology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China; Fujian Key Laboratory of Women and Children's Critical Diseases Research, Fujian Maternity and Child Health Hospital, Fuzhou 350001, Fujian, China; Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, Fujian, China; School of Group Medicine and Public Health, Peking Union Medical College, Beijing 100091, China. Electronic address:

The war between humanity and malignant tumors has been ongoing, with continuous advancements in classic chemotherapy and radiotherapy regimens, targeted drugs, endocrine therapy, and immunotherapy. However, tumor cells can develop primary or secondary resistance to these treatment options, making the issue of tumor resistance a major factor affecting patient prognosis and leading to recurrence. Estrogen-related receptors (ERRs) are members of the nuclear receptor superfamily, primarily involved in regulating glucose, lipid, and amino acid metabolism, serving as a central hub for intracellular energy metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!