Currently, lung cancer is one of the most lethal types of cancer (IARC, 2012), the pathology being detected in advanced stage, when the tumor has considerable volume because the disease in most cases asymptomatic in the early stages (INCA, 2016). Dosimetry analysis of healthy organs under real conditions is not feasible. Therefore, computational simulations are used to aid in dose verification in organs of patients submitted to radiotherapy. The goal of this study was to calculate the equivalent dose, due to photons, in the surrounding of healthy organs of patients submitted to radiotherapy for lung cancer, through computational modeling. The simulation was performed using the MCNPX code (MNCPX, 2006), Rex and Regina phantoms (ICRP 110, 2009), radiotherapy room, Siemens Oncor Expression accelerator operating at 6 MV and treatment protocol adopted at the INCA (National Cancer Institute - Brazil). The results obtained, considering the dose due to photons for both phantoms indicate that organs located inside the thoracic cavity received higher dose, being the bronchi, heart and esophagus more affected, due to their anatomical positioning. Clinical data describe the development of bronchiolitis, esophagitis and cardiomyopathies with decreased cardiopulmonary function as one of the major effects of lung cancer treatment. In the Regina phantom, the second largest dose was in the region of the breasts with 615.73 mSv/Gy, while in the Rex the dose was 514.06 mSv/Gy, event related to the difference of anatomical structure of the organ. A qualitative analysis was performed between the dose deposition profile of the treatment planning system and the simulated treatment through the tmesh command and a similar profile of dose distribution was verified throughout the patient's body.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2018.07.012DOI Listing

Publication Analysis

Top Keywords

lung cancer
16
dose
9
equivalent dose
8
cancer treatment
8
dose distribution
8
healthy organs
8
organs patients
8
patients submitted
8
submitted radiotherapy
8
dose photons
8

Similar Publications

Tumor cell-intrinsic signaling pathways can drastically affect the tumor immune microenvironment, promoting tumor progression and resistance to immunotherapy by excluding immune-cell populations from the tumor. Several tumor cell-intrinsic pathways have been reported to modulate myeloid-cell and T-cell infiltration creating "cold" tumors. However, clinical evidence suggests that excluding cytotoxic T cells from the tumor core also mediates immune evasion.

View Article and Find Full Text PDF

Antibodies targeting immune checkpoints, such as PD-1, PD-L1, or CTLA-4, have transformed the treatment of patients with lung cancers. Unprecedented rates of durable responses are achieved in an imperfectly characterized population of patients with metastatic disease. More recently, immune checkpoint inhibitors have been explored in patients with resectable non-small-cell lung cancers.

View Article and Find Full Text PDF

Lung cancers associated with cystic airspaces (LCCAs) are a rare and relatively novel concept analyzed in various case reports and retrospective studies. In this review, it was our aim to investigate the morphologic, imaging, and clinicopathologic characteristics of this entity, as well as its natural course in light of the current literature. Literature search including the years 2000-2022 was conducted in PubMed.

View Article and Find Full Text PDF

Background: Telecytology-assisted rapid on-site evaluation (ROSE) offers a cost-effective method to enhance minimally invasive biopsies like fine needle aspiration and core biopsies with touch preparation. By reducing nondiagnostic sampling and the need for repeat procedures, ROSE via telecytology facilitates prompt triage for ancillary tests, improving patient management. This study examines cases initially deemed adequate for diagnosis during telecytology-assisted ROSE but later categorized as nondiagnostic at final evaluation (NDIS).

View Article and Find Full Text PDF

Image-Based Phenotypic Profiling Enables Rapid and Accurate Assessment of EGFR-Activating Mutations in Tissues from Lung Cancer Patients.

J Am Chem Soc

January 2025

Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610065, China.

Determining mutations in the kinase domain of the epidermal growth factor receptor (EGFR) is critical for the effectiveness of EGFR tyrosine kinase inhibitors (TKIs) in lung cancer. Yet, DNA-based sequencing analysis of tumor samples is time-consuming and only provides gene mutation information on EGFR, making it challenging to design effective EGFR-TKI therapeutic strategies. Here, we present a new image-based method involving the rational design of a quenched probe based on EGFR-TKI to identify mutant proteins, which permits specific and "no-wash" real-time imaging of EGFR in living cells only upon covalent targeting of the EGFR kinase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!