Bioaccumulation of toxic metal elements including mercury (Hg) can be highly variable in marine fish species. Metal concentration is influenced by various species-specific physiological and ecological traits, including individual diet composition and foraging habitat. The impact of trophic ecology and habitat preference on Hg accumulation was analyzed through total Hg concentration and stable isotope ratios of carbon (δC) and nitrogen (δN) in the muscle of 132 fish belonging to 23 different species from the Senegalese coast (West Africa), where the marine ecosystem is submitted to nutrient inputs from various sources such as upwelling or rivers. Species-specific ecological traits were first investigated and results showed that vertical (i.e. water column distribution) and horizontal habitat (i.e. distance from the coast) led to differential Hg accumulation among species. Coastal and demersal fish were more contaminated than offshore and pelagic species. Individual characteristics therefore revealed an increase of Hg concentration in muscle that paralleled trophic level for some locations. Considering all individuals, the main carbon source was significantly correlated with Hg concentration, again revealing a higher accumulation for fish foraging in nearshore and benthic habitats. The large intraspecific variability observed in stable isotope signatures highlights the need to conduct ecotoxicological studies at the individual level to ensure a thorough understanding of mechanisms driving metal accumulation in marine fish. For individuals from a same species and site, Hg variation was mainly explained by fish length, in accordance with the bioaccumulation of Hg over time. Finally, Hg concentrations in fish muscle are discussed regarding their human health impact. No individual exceeded the current maximum acceptable limit for seafood consumption set by both the European Union and the Food and Agriculture Organization of the United Nations. However, overconsumption of some coastal demersal species analyzed here could be of concern regarding human exposure to mercury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.09.330DOI Listing

Publication Analysis

Top Keywords

stable isotope
12
marine fish
12
foraging habitat
8
fish
8
ecological traits
8
coastal demersal
8
species
6
accumulation
5
isotope analyses
4
analyses revealed
4

Similar Publications

Mitigating matrix effects in oil and gas wastewater analysis: LC-MS/MS method for ethanolamines.

Environ Sci Process Impacts

January 2025

Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.

The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.

View Article and Find Full Text PDF

Correction for 'Responses of CO and CH in the alpine wetlands of the Tibetan Plateau to warming and nitrogen and phosphorus additions' by Wenbao Zhang ,, 2024, , 1516-1525, https://doi.org/10.1039/D4EM00174E.

View Article and Find Full Text PDF

Fungi play a crucial role in aquatic leaf litter decomposition. Aquatic fungi have long been thought to spend the majority of their lives in the water. Here, we explore the possibility of an amphibious life cycle, where phyllosphere fungi spend part of their life cycle in aquatic systems.

View Article and Find Full Text PDF

Research on the metabolites and key metabolic enzymes of allocryptopine in chicken liver microsomes via stable isotope tracing technology.

J Pharm Biomed Anal

January 2025

Shanxi Key Lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China. Electronic address:

Allocryptopine (ALL), a principal active component of the novel veterinary medicine Bopu Powder®, has gained widespread application in the poultry farming sector for the effective management of Escherichia coli (E. coli) diarrhea. In order to explore the metabolites and the pivotal enzymes associated with ALL, this study was conducted employing an in vitro chicken liver microsomal incubation.

View Article and Find Full Text PDF

Codon bias, nucleotide selection, and genome size predict in situ bacterial growth rate and transcription in rewetted soil.

Proc Natl Acad Sci U S A

January 2025

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550.

In soils, the first rain after a prolonged dry period represents a major pulse event impacting soil microbial community function, yet we lack a full understanding of the genomic traits associated with the microbial response to rewetting. Genomic traits such as codon usage bias and genome size have been linked to bacterial growth in soils-however, often through measurements in culture. Here, we used metagenome-assembled genomes (MAGs) with O-water stable isotope probing and metatranscriptomics to track genomic traits associated with growth and transcription of soil microorganisms over one week following rewetting of a grassland soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!