The capability of plant growth promoting microbes to survive under abiotic stresses has important significance for improving plant growth and productivity. Among the various plant growth promoting biomolecules produced by microbes, exopolysaccharide (EPS) help microbes to survive in inhospitable environments and endure environmental stressful conditions. In the present study, a yeast strain CAH2 was isolated from Beta vulgaris rhizosphere soil and identified as Rhodotorula sp., based on the partial 18S rRNA gene sequence analysis. Rhodotorula sp. strain CAH2 was found to tolerate higher concentrations of Al (6 mM), NaCl (150 mM) and PEG-6000 (15%, w/v). The strain CAH2 was shown to produce 7.5 g L of EPS in the production medium with sucrose and yeast extract as a carbon and nitrogen sources, respectively. The EPS yield was increased constantly with increasing concentrations of Al, NaCl and PEG-6000. The structural feature of EPS studied through FT-IR and NMR spectral analysis confirmed the presence of glucose, mannose and galactose. The yeast strain CAH2 was produced multiple plant growth promoting traits in the presence and absence of abiotic stresses. Finally, these results indicate that the production of EPS could be safeguard the plant growth promoting Rhodotorula sp. strain CAH2 from unfavourable environmental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2018.10.016DOI Listing

Publication Analysis

Top Keywords

plant growth
24
strain cah2
24
growth promoting
20
rhodotorula strain
12
microbes survive
8
abiotic stresses
8
yeast strain
8
plant
6
growth
6
strain
6

Similar Publications

Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.

View Article and Find Full Text PDF

Damage activates EXG1 and RLP44 to suppress vascular differentiation during regeneration in Arabidopsis.

Plant Commun

January 2025

Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51, Uppsala, Sweden. Electronic address:

Plants possess remarkable regenerative abilities to form de novo vasculature after damage and in response to pathogens that invade and withdraw nutrients. To look for common factors that affect vascular formation upon stress, we searched for Arabidopsis thaliana genes differentially expressed upon Agrobacterium infection, nematode infection and plant grafting. One such gene was cell wall related and highly induced by all three stresses and was named ENHANCED XYLEM AND GRAFTING1 (EXG1) since mutations in it promoted ectopic xylem formation in Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL) and enhanced graft formation.

View Article and Find Full Text PDF

Genome-wide analysis of GRAS gene family and functional identification of a putative development and maintenance of axillary meristematic tissue gene PlGRAS22 in Paeonia ludlowii.

Int J Biol Macromol

January 2025

School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China. Electronic address:

The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.

View Article and Find Full Text PDF

Synergistic action of multiple degumming-related enzymes secreted by Bacillus subtilis XW-18: Decisive factor for driving the bio-degumming process of raw pineapple leaves.

Int J Biol Macromol

January 2025

College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Engineering Technology Research Center of Prefabricated Seafood Processing and Quality Control, Zhanjiang 524088, China. Electronic address:

Degumming, a process of removing gummy substances surrounding fiber, plays a crucial role in preparing plant fibers. This study clearly clarified that the multiple degumming enzymes by Bacillus subtilis XW-18 acted as a decisive factor for driving bio-degumming process of raw pineapple leaves. Firstly, PCR analysis verified that B.

View Article and Find Full Text PDF

Application of herbicide-degrading bacteria is an effective strategy to remove herbicide in soil. However, the ability of bacteria to degrade a herbicide is often severely limited in the presence of other pesticide. In this study, the atrazine-degrading strain Klebsiella varicola FH-1 and acetochlor-degrading strain Bacillus Aryabhatti LY-4 were used as parent strains to construct the recombinant RH-92 strain through protoplast fusion technology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!