A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cardiac xenografts show reduced survival in the absence of transgenic human thrombomodulin expression in donor pigs. | LitMetric

A combination of genetic manipulations of donor organs and target-specific immunosuppression is instrumental in achieving long-term cardiac xenograft survival. Recently, results from our preclinical pig-to-baboon heterotopic cardiac xenotransplantation model suggest that a three-pronged approach is successful in extending xenograft survival: (a) α-1,3-galactosyl transferase (Gal) gene knockout in donor pigs (GTKO) to prevent Gal-specific antibody-mediated rejection; (b) transgenic expression of human complement regulatory proteins (hCRP; hCD46) and human thromboregulatory protein thrombomodulin (hTBM) to avoid complement activation and coagulation dysregulation; and (c) effective induction and maintenance of immunomodulation, particularly through co-stimulation blockade of CD40-CD40L pathways with anti-CD40 (2C10R4) monoclonal antibody (mAb). Using this combination of manipulations, we reported significant improvement in cardiac xenograft survival. In this study, we are reporting the survival of cardiac xenotransplantation recipients (n = 3) receiving xenografts from pigs without the expression of hTBM (GTKO.CD46). We observed that all grafts underwent rejection at an early time point (median 70 days) despite utilization of our previously reported successful immunosuppression regimen and effective control of non-Gal antibody response. These results support our hypothesis that transgenic expression of human thrombomodulin in donor pigs confers an independent protective effect for xenograft survival in the setting of a co-stimulation blockade-based immunomodulatory regimen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450784PMC
http://dx.doi.org/10.1111/xen.12465DOI Listing

Publication Analysis

Top Keywords

xenograft survival
16
donor pigs
12
human thrombomodulin
8
cardiac xenograft
8
cardiac xenotransplantation
8
transgenic expression
8
expression human
8
survival
6
cardiac
5
cardiac xenografts
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!