Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Consensus has emerged in the literature that increased biodiversity enhances the capacity of ecosystems to perform multiple functions. However, most biodiversity/ecosystem function studies focus on a single ecosystem, or on landscapes of homogenous ecosystems. Here, we investigate how increased landscape-level environmental dissimilarity may affect the relationship between different metrics of diversity (α, β, or γ) and ecosystem function. We produced a suite of simulated landscapes, each of which contained four experimental outdoor aquatic mesocosms. Differences in temperature and nutrient conditions of the mesocosms allowed us to simulate landscapes containing a range of within-landscape environmental heterogeneities. We found that the variation in ecosystem functions was primarily controlled by environmental conditions, with diversity metrics accounting for a smaller (but significant) amount of variation in function. When landscapes were more homogeneous, α, β, and γ diversity was not associated with differences in primary production, and only γ was associated with changes in decomposition. In these homogeneous landscapes, differences in these two ecosystem functions were most strongly related to nutrient and temperature conditions in the ecosystems. However, as landscape-level environmental dissimilarity increased, the relationship between α, β, or γ and ecosystem functions strengthened, with β being a greater predictor of variation in decomposition at the highest levels of environmental dissimilarity than α or γ. We propose that when all ecosystems in a landscape have similar environmental conditions, species sorting is likely to generate a single community composition that is well suited to those environmental conditions, β is low, and the efficiency of diversity-ecosystem function couplings is similar across communities. Under this low β, the effect of abiotic conditions on ecosystem function will be most apparent. However, when environmental conditions vary among ecosystems, species sorting pressures are different among ecosystems, producing different communities among locations in a landscape. These conditions lead to stronger relationships between β and the magnitude of ecosystem functions. Our results illustrate that abiotic conditions and the homogeneity of communities influence ecosystem function expressed at the landscape scale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ecy.2492 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!