Protein arginine methyltransferase 5 (PRMT5) is the main enzyme responsible for the symmetrical dimethylation of arginine residues on target proteins in both the cytoplasm and the nucleus. Though its activity has been associated with tumor progression in various cancers, the expression pattern of this oncoprotein has been scarcely studied in breast cancer. In the current work, we analyzed its expression in a large cohort of breast cancer patients, revealing higher nuclear PRMT5 levels in ERα-positive tumors and an association with prolonged disease free and overall survival. Interestingly, high PRMT5 nuclear expression was also associated with higher nuclear liver kinase B1 (LKB1), suggesting that a functional relationship may occur. Consistently, several approaches provided evidence that PRMT5 and LKB1 interact directly in the cytoplasm of mammary epithelial cells. Moreover, although PRMT5 is not able to methylate LKB1, we found that PRMT5 is a bona fade substrate for LKB1. We identified T132, 139 and 144 residues, located in the TIM-Barrel domain of PRMT5, as target sites for LKB1 phosphorylation. The point mutation of PRMT5 T139/144 to A139/144 drastically decreased its methyltransferase activity, due probably to the loss of its interaction with regulatory proteins such as MEP50, pICln and RiOK1. In addition, modulation of LKB1 expression modified PRMT5 activity, highlighting a new regulatory mechanism that could have clinical implications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294691 | PMC |
http://dx.doi.org/10.1002/ijc.31909 | DOI Listing |
Breast Cancer Res
January 2025
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
Background: CDK4/6 inhibitors have significantly improved the survival of patients with HR-positive/HER2-negative breast cancer, becoming a first-line treatment option. However, the development of resistance to these inhibitors is inevitable. To address this challenge, novel strategies are required to overcome resistance, necessitating a deeper understanding of its mechanisms.
View Article and Find Full Text PDFBMC Cancer
January 2025
Faculty of Medicine, University of Cologne and Institute for Health Economics and Clinical Epidemiology, University Hospital Cologne, Cologne, Germany.
Background: Patients who actively engage in their medical decision-making processes can experience better health outcomes. This exploratory study aimed to identify predictors of preferred and actual roles in decision-making in healthy women with BRCA1/2 pathogenic variants (PVs).
Methods: Women with BRCA1/2 PVs without a history of breast and/or ovarian cancer were recruited in six centres across Germany.
Invest New Drugs
January 2025
UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
Background: Since MYC is one of the most frequently altered driver genes involved in cancer formation, it is a potential target for new anti-cancer therapies. Historically, however, MYC has proved difficult to target due to the absence of a suitable crevice for binding potential low molecular weight drugs.
Objective: The aim of this study was to evaluate a novel molecular glue, dubbed GT19630, which degrades both MYC and GSPT1, for the treatment of breast cancer.
Radiol Med
January 2025
Department of Translational Medicine, University of Ferrara, Ferrara, Italy.
Purpose: Build machine learning (ML) models able to predict pathological complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer (BC) patients based on conventional and radiomic signatures extracted from baseline [F]FDG PET/CT.
Material And Methods: Primary tumor and the most significant lymph node metastasis were manually segmented in baseline [F]FDG PET/CT of 52 newly diagnosed BC patients. Clinical parameters, NAC and conventional semiquantitative PET parameters were collected.
EMBO J
January 2025
Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
mTOR plays a pivotal role in cancer growth control upon amino acid response. Recently, CDK inhibitor P27KIP1 has been reported as a noncanonical inhibitor of mTOR signaling in MEFs, via unclear mechanisms. Here, we find that P27KIP1 degradation via E3 ligase TRIM21 is inhibited by human micropeptide hSPAR through its C-terminus (hSPAR-C), causing P27KIP1's cytoplasmic accumulation in breast cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!