Phenylalanine (Phe) biosynthesis in plants is a key process, as Phe serves as a precursor of proteins and phenylpropanoids. The prephenate pathway connects chorismate, the final product of the shikimate pathway, with the biosynthesis of Phe and tyrosine. Two alternative routes of Phe biosynthesis have been reported: one depending on arogenate, and the other on phenylpyruvate. Whereas the arogenate pathway is considered the main route, the role of the phenylpyruvate pathway remains unclear. Here, we report that a deficiency in ADT2, a bifunctional arogenate dehydratase (ADT)/prephenate dehydratase (PDT) enzyme, causes embryo arrest and seed abortion. This result makes a clear distinction between the essential role of ADT2 and the five remaining ADT genes from Arabidopsis, which display mostly overlapping functions. We have found that PHA2, a monofunctional PDT from yeast, restores the adt2 phenotype when it is targeted within the plastids, but not when is expressed in the cytosol. Similar results can be obtained by expressing ADT3, a monofunctional ADT. These results suggest that Phe can be synthesized from phenylpyruvate or arogenate when the bifunctional ADT2 is replaced by other ADT or PDT enzymes during seed formation, highlighting the importance of Phe biosynthesis for embryo development, and providing further insights into the plasticity of Phe biosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcy200 | DOI Listing |
J Agric Food Chem
January 2025
Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China.
J Pediatr Endocrinol Metab
January 2025
Department of Rare Diseases, Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Türkiye.
Objectives: Phenylketonuria (PKU) and tyrosinemia type 3 (HT3) are both rare autosomal recessive disorders of phenylalanine-tyrosine metabolism. PKU is caused by a deficiency in phenylalanine hydroxylase (PAH), leading to elevated phenylalanine (Phe) and reduced tyrosine (Tyr) levels. HT3, the rarest form of tyrosinemia, is due to a deficiency in 4-hydroxyphenylpyruvate dioxygenase (HPD).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
Amino acids are the basic structural units of life, and their intake levels affect disease and health. In the case of renal disease, alterations in amino acid metabolism can be used not only as a clinical indicator of renal disease but also as a therapeutic strategy. However, the biological roles and molecular mechanisms of natural chiral amino acids in human proximal tubular epithelial cells (HK-2) remain unclear.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China.
The East Friesian sheep is a dairy breed known for its high fertility and high milk production and is currently one of the best dairy sheep breeds in the world. This breed is known to have a poor disease-resistant phenotype compared to Hu sheep. Gut microbiota and metabolites play a role in host disease resistance.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Agricultural Science, Biotechnology and Food Science, Cyprus University of Technology, Limassol, 3036, Cyprus.
Savory (Satureja rechingeri L.) is one of Iran's most important medicinal plants, having low irrigation needs, and thus is considered one of the most valuable plants for cultivation in arid and semi-arid regions, especially under drought conditions. The current research was carried out to develop a genetic algorithm-based artificial neural network (ΑΝΝ) model able of simulating the levels of antioxidants in savory when using soil amendments [biochar (BC) and superabsorbent (SA)] under drought.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!