Diaphragmatic myoblasts (DM) are stem cells of the diaphragm, a muscle displaying high resistance to stress and exhaustion. We hypothesized that DM modified to overexpress connexin-43 (cx43), seeded on aligned poly (l-lactic acid) (PLLA) sheets would decrease infarct size and improve ventricular function in sheep with acute myocardial infarction (AMI). Sheep with AMI received PLLA sheets without DM (PLLA group), sheets with DM (PLLA-DM group), sheets with DM overexpressing cx43 (PLLA-DMcx43) or no treatment (control group, n = 6 per group). Infarct size (cardiac magnetic resonance) decreased ∼25% in PLLA-DMcx43 [from 8.2 ± 0.6 ml (day 2) to 6.5 ± 0.7 ml (day 45), p < .01, ANOVA-Bonferroni] but not in the other groups. Ejection fraction (EF%) (echocardiography) at 3 days post-AMI fell significantly in all groups. At 45 days, PLLA-DM y PLLA-DMcx43 recovered their EF% to pre-AMI values (PLLA-DM: 61.1 ± 0.5% vs. 58.9 ± 3.3%, p = NS; PLLA-DMcx43: 64.6 ± 2.9% vs. 56.9 ± 2.4%, p = NS), but not in control (56.8 ± 2.0% vs. 43.8 ± 1.1%, p < .01) and PLLA (65.7 ± 2.1% vs. 56.6 ± 4.8%, p < .01). Capillary density was higher (p < .05) in PLLA-DMcx43 group than in the remaining groups. In conclusion, PLLA-DMcx43 reduces infarct size in sheep with AMI. PLLA-DMcx43 and PLLA-DM improve ventricular function similarly. Given its safety and feasibility, this novel approach may prove beneficial in the clinic.

Download full-text PDF

Source
http://dx.doi.org/10.1080/21691401.2018.1508029DOI Listing

Publication Analysis

Top Keywords

infarct size
12
poly l-lactic
8
l-lactic acid
8
seeded aligned
8
diaphragmatic myoblasts
8
ventricular function
8
function sheep
8
sheep acute
8
plla sheets
8
group sheets
8

Similar Publications

HSP90 Family Members, Their Regulators and Ischemic Stroke Risk: A Comprehensive Molecular-Genetics and Bioinformatics Analysis.

Front Biosci (Schol Ed)

December 2024

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 305041 Kursk, Russia.

Background: Disruptions in proteostasis are recognized as key drivers in cerebro- and cardiovascular disease progression. Heat shock proteins (HSPs), essential for maintaining protein stability and cellular homeostasis, are pivotal in neuroperotection. Consequently, deepening the understanding the role of HSPs in ischemic stroke (IS) risk is crucial for identifying novel therapeutic targets and advancing neuroprotective strategies.

View Article and Find Full Text PDF

Background: Heat shock proteins (HSPs) play a critical role in the molecular mechanisms of ischemic stroke (IS). A possible role for HSP40 family proteins in atherosclerosis progression has already been revealed; however, to date, molecular genetic studies on the involvement of genes encoding proteins of the HSP40 family in IS have not yet been carried out.

Aim: We sought to determine whether nine single nucleotide polymorphisms (SNPs) in genes encoding HSP40 family proteins (, , , , and ) are associated with the risk and clinical features of IS.

View Article and Find Full Text PDF

This case report discusses a unique presentation of an artery of Percheron (AOP) infarct resulting in rapidly resolving internuclear ophthalmoplegia (INO) without classical signs. This is the case of a 70-year-old male patient who presented to a community Emergency Department following acute code stroke activation. Physical exam and imaging studies including non-contrast CT, CT angiography, CT perfusion, and MRI were performed.

View Article and Find Full Text PDF

Cardiac tissue regeneration by microfluidic generated cardiac cell-laden calcium alginate microgels and mesenchymal stem cell extracted exosomes on myocardial infarction model.

Int J Biol Macromol

December 2024

Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:

Regenerative medicine is one of the effective approaches for myocardial infarcted (MI) tissue due to the low capacity of heart for regeneration. However, cell therapy with local administration has shown poor cell retention in the targeted area and limited engraftment capacity at the intended location, resulting in inadequate tissue regeneration. The present study involves mesenchymal stem cell-derived exosomes and encapsulated cells in small and injectable calcium alginate microgels by a specialized microfluidic device to decrease inflammation and increase cell retention in the infarcted tissue.

View Article and Find Full Text PDF

Bufalin Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Macrophage Pyroptosis via P62 Pathway.

J Cardiovasc Transl Res

December 2024

Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.

Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!