The Iowa Gambling Task (IGT) is widely used to study decision-making within healthy and psychiatric populations. However, the complexity of the IGT makes it difficult to attribute variation in performance to specific cognitive processes. Several cognitive models have been proposed for the IGT in an effort to address this problem, but currently no single model shows optimal performance for both short- and long-term prediction accuracy and parameter recovery. Here, we propose the Outcome-Representation Learning (ORL) model, a novel model that provides the best compromise between competing models. We test the performance of the ORL model on 393 subjects' data collected across multiple research sites, and we show that the ORL reveals distinct patterns of decision-making in substance-using populations. Our work highlights the importance of using multiple model comparison metrics to make valid inference with cognitive models and sheds light on learning mechanisms that play a role in underweighting of rare events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286201PMC
http://dx.doi.org/10.1111/cogs.12688DOI Listing

Publication Analysis

Top Keywords

outcome-representation learning
8
learning model
8
model novel
8
iowa gambling
8
gambling task
8
cognitive models
8
orl model
8
model
7
novel reinforcement
4
reinforcement learning
4

Similar Publications

The influence of social feedback on reward learning in the Iowa gambling task.

Front Psychol

May 2024

Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Wuhan, China.

Learning, an important activity for both human and animals, has long been a focal point of research. During the learning process, subjects assimilate not only their own information but also information from others, a phenomenon known as social learning. While numerous studies have explored the impact of social feedback as a reward/punishment during learning, few studies have investigated whether social feedback facilitates or inhibits the learning of environmental rewards/punishments.

View Article and Find Full Text PDF

Cortical and basal ganglia circuits play a crucial role in the formation of goal-directed and habitual behaviors. In this study, we investigate the cortico-striatal circuitry involved in learning and the role of this circuitry in the emergence of inflexible behaviors such as those observed in addiction. Specifically, we develop a computational model of cortico-striatal interactions that performs concurrent goal-directed and habit learning.

View Article and Find Full Text PDF

Background: Chronic pain is a significant worldwide health problem. It has been reported that people with chronic pain experience decision-making impairments, but these findings have been based on conventional laboratory experiments to date. In such experiments, researchers have extensive control of conditions and can more precisely eliminate potential confounds.

View Article and Find Full Text PDF

Learning about positive and negative outcomes of actions is crucial for survival and underpinned by conserved circuits including the striatum. How associations between actions and outcomes are formed is not fully understood, particularly when the outcomes have mixed positive and negative features. We developed a novel foraging ('bandit') task requiring mice to maximize rewards while minimizing punishments.

View Article and Find Full Text PDF

Poor psychometrics, particularly low test-retest reliability, pose a major challenge for using behavioral tasks in individual differences research. Here, we demonstrate that full generative modeling of the Iowa Gambling Task (IGT) substantially improves test-retest reliability and may also enhance the IGT's validity for use in characterizing internalizing pathology, compared to the traditional analytic approach. IGT data was collected across two sessions, one month apart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!