In bilaterians, animal/vegetal axial (A/V) patterning is a fundamental early developmental event for establishment of animal/vegetal polarity and following specification of the germ layers (ectoderm, mesoderm, endoderm), of which the evolutionary origin is enigmatic. Understanding A/V axial patterning in a basal animal from each phylum would help to reconstruct the ancestral state of germ layer specification in bilaterians and thus, the evolution of mesoderm, the third intermediate cell layer. Herein, data show that the canonical Wnt/β-catenin (cWnt) and Notch signaling pathways control mesoderm specification from the early endomesoderm in the basal chordate amphioxus. Amphioxus belongs to the deuterostome, one of the main superphyla in Bilateria. In the present study, genes (tcf, dsh, axin, gsk3β) encoding cWnt components were expressed in the endomesoderm during the gastrula stages. Excess cWnt signaling by BIO, a GSK3 inhibitor, expanded the expression domains of outer endomesodermal genes that include future mesodermal ones and suppressed inner endomesodermal and ectodermal genes. Interfering Notch signaling by DAPT, a γ-secretase inhibitor, resulted in decreased expression of ectodermal and endomesodermal markers. These results suggest that cWnt and Notch have important roles in mesoderm specification in amphioxus embryos. The evolution of the mesoderm is also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ede.12273 | DOI Listing |
Nanoscale Adv
December 2024
Department of Chemistry, Chemical and Biomedical Engineering, University of New Haven West Haven CT 06516 USA
Mesenchymal stem cell (MSC)-based bone tissue regeneration has gained significant attention due to the excellent differentiation capacity and immunomodulatory activity of MSCs. Enhancing osteogenesis regulation is crucial for improving the therapeutic efficacy of MSC-based regeneration. By utilizing the regenerative capacity of bone ECM and the functionality of nanoparticles, we recently engineered bone-based nanoparticles (BNPs) from decellularized porcine bones.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Developmental Biology and Genetics, Indian Institute of Science (IISc), Bangalore, India.
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling pathway is a key player in animal development and physiology. Although it functions in a variety of processes, the net output of JAK-STAT signalling depends on its spatiotemporal activation, as well as extensive crosstalk with other signalling pathways. Drosophila, with its relatively simple signal transduction pathways and plethora of genetic analysis tools, is an ideal system for dissecting JAK-STAT signalling interactions.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
Cell communication and competition pathways are malleable to Myocardial Infarction (MI). Key signals, transcriptive regulators, and metabolites associated with apoptotic responses such as Myc, mTOR, and p53 are important players in the myocardium. The individual state of cardiomyocytes, fibroblasts, and macrophages in the heart tissue are adaptable in times of stress.
View Article and Find Full Text PDFArthroscopy is a minimally invasive surgical procedure used to diagnose and treat joint problems. The clinical workflow of arthroscopy typically involves inserting an arthroscope into the joint through a small incision, during which surgeons navigate and operate largely by relying on their visual assessment through the arthroscope. However, the arthroscope's restricted field of view and lack of depth perception pose challenges in navigating complex articular structures and achieving surgical precision during procedures.
View Article and Find Full Text PDFInt Endod J
January 2025
School of Stomatology, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong, China.
Aim: Effective control of mesenchymal stem cell (MSC) differentiation towards osteogenic lineages is fundamental for bone regeneration. This study elucidates the regulatory role of methyltransferase like 7A (METTL7A) in the osteogenic differentiation of MSCs.
Methodology: Alkaline phosphatase staining, Alizarin Red S staining, western blotting, and in vivo studies were conducted to determine the effects of METTL7A depletion or overexpression on the osteogenic differentiation of various types of MSCs.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!