Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oxidative stress (OS) is the result of prooxidant molecules overwhelming the antioxidant defense mechanisms. Hemodialysis (HD) constitutes a state of elevated inflammation and OS, due to loss of antioxidants during dialysis and activation of white blood cells triggering production of reactive oxygen species. Dialysis vintage, dialysis methods, and type and condition of vascular access, biocompatibility of dialyzer membrane and dialysate, iron administration, and anemia all can play a role in aggravating OS, which in turn has been associated with increased morbidity and mortality. Oral or intravenous administration of antioxidants may detoxify the oxidative molecules and at least in part repair OS-mediated tissue damage. Lifestyle interventions and optimization of a highly biocompatible HD procedure might ameliorate OS development in dialysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/sdi.12745 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!