Control of freezing in plant tissues is a key issue in cold hardiness mechanisms. Yet freeze-regulation mechanisms remain mostly unexplored. Among them, ice nucleation activity (INA) is a primary factor involved in the initiation and regulation of freezing events in plant tissues, yet the details remain poorly understood. To address this, we developed a highly reproducible assay for determining plant tissue INA and noninvasive freeze visualization tools using MRI and infrared thermography. The results of visualization studies on plant freezing behaviors and INA survey of over 600 species tissues show that (1) freezing-sensitive plants tend to have low INA in their tissues (thus tend to transiently supercool), while wintering cold-hardy species have high INA in some specialized tissues; and (2) the high INA in cold-hardy tissues likely functions as a freezing sensor to initiate freezing at warm subzero temperatures at appropriate locations and timing, resulting in the induction of tissue-/species-specific freezing behaviors (e.g., extracellular freezing, extraorgan freezing) and the freezing order among tissues: from the primary freeze to the last tissue remaining unfrozen (likely INA level dependent). The spatiotemporal distributions of tissue INA, their characterization, and functional roles are detailed. INA assay principles, anti-nucleation activity (ANA), and freeze visualization tools are also described.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-981-13-1244-1_6 | DOI Listing |
Sci Rep
January 2025
Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic.
Bulk properties of two-phase systems comprising methane and liquid p-xylene were derived experimentally using neutron imaging and theoretically predicted using molecular dynamics (MD). The measured and predicted methane diffusivity in the liquid, Henry's law constant, apparent molar volume, and surface tension compared well within the experimentally studied conditions (273.15 to 303.
View Article and Find Full Text PDFFood Res Int
January 2025
The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch Mail Centre, Christchurch 8140, New Zealand.
Faba bean (Vicia faba L.) offers a rich nutritional profile with high protein content and abundant vitamins and minerals. Processing of faba beans for freezing requires blanching, yielding liluva (legume processing water), possibly containing leached macronutrients, with potential for upcycling.
View Article and Find Full Text PDFFood Res Int
January 2025
Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Türkiye. Electronic address:
Lipid and protein oxidation have significant effects on the shelf-life and nutritional value of meat and meat products. While lipid oxidation has been extensively studied, it has been recognized that proteins are also susceptible to oxidation. However, the precise mechanisms of oxygen-induced amino acid and protein modifications in the food matrix remain unclear.
View Article and Find Full Text PDFFood Res Int
January 2025
Gembloux Agro-Bio Tech, University of Liège, Gembloux B-5030, Belgium.
To get insight into the thawing and salting in recovery and protection mechanisms on quality in frozen meat after subsequent cooking. The myofiber morphological-water evolution and quality changes in beef during freezing-thawing-cooking and freezing-cooking treatments were investigated. The cooking losses of fresh-cooked, frozen-cooked, and frozen-thawed-cooked samples were 27.
View Article and Find Full Text PDFFood Res Int
January 2025
Research and Development Cell, Biotechnology Department, Manav Rachna International Institute of Research and Studies (Deemed to Be University), Faridabad 121004, Haryana, India. Electronic address:
Blue food processing applies to the production and processing of fish, algae, and other aquatic organisms for human consumption. As the global population grows and consumer demand for protein-rich foods increases, there is increased interest in exploring a wide range of innovative approaches for processing blue foods in ways that improve the efficiency, sustainability, and nutritional quality of these products and reduce the environmental impact of their production. Existing approaches to process blue foods including fishing and aquaculture for production and manual processing at landing are not sufficiently scalable, efficient, or environmentally sustainable for today's global needs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!