Colloidal lithography is a cost-efficient method to produce large-scale nanostructured arrays on surfaces. Typically, colloidal particles are assembled into hexagonal close-packed monolayers at liquid interfaces and deposited onto a solid substrate. Many applications, however, require non close-packed monolayers, which are more difficult to fabricate. Preassembly at the oil/water interface provides non close-packed colloidal assemblies but these are difficult to transfer to a solid substrate without compromising the ordering due to capillary forces acting upon drying. Alternatively, plasma etching can reduce a close-packed monolayer into a non close-packed arrangement, however, with limited interparticle distance and compromised particle shape. Here, we present a simple alternative approach toward non close-packed colloidal monolayers with tailored interparticle distance, high order, and retained spherical particle shape. We preassemble poly(-isopropylacrylamide)-silica (SiO@PNiPAm) core-shell particles at the air/water interface, transfer the interfacial spacer to a solid substrate, and use the polymer shell as a sacrificial layer that can be thermally removed to leave a non close-packed silica monolayer. The shell thickness, cross-linking density, and the phase behavior upon compression of these complex particles at the air/water interface provide parameters to precisely control the lattice spacing in these surface nanostructures. We achieve hexagonal non close-packed arrays of silica spheres with interparticle distances between 400 and 1280 nm, up to 8 times their diameter. The retained spherical shape is advantageous for surface nanostructuring, which we demonstrate by the fabrication of gold nanocrescent arrays via colloidal lithography and silicon nanopillar arrays via metal-assisted chemical etching.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6166996PMC
http://dx.doi.org/10.1021/acsomega.8b01985DOI Listing

Publication Analysis

Top Keywords

solid substrate
12
sio@pnipam core-shell
8
core-shell particles
8
colloidal lithography
8
close-packed
8
hexagonal close-packed
8
close-packed monolayers
8
close-packed colloidal
8
interparticle distance
8
particle shape
8

Similar Publications

This paper explores the process of forming arrays of vertically oriented carbon nanotubes (CNTs) localized on metal electrodes using thin porous anodic alumina (PAA) on a solid substrate. On a silicon substrate, a titanium film served as the electrode layer, and an aluminium film served as the base layer in the initial film structure. A PAA template was formed from the Al film using two-step electrochemical anodizing.

View Article and Find Full Text PDF

<b>Background and Objective:</b> Laccase as a ligninolytic enzyme has been known for its green-catalysis mechanism, which has the potential to be applied to food industries. Lignocellulose found in agro-industrial waste is promising for laccase production as a substrate, that could be encountered in pineapple (<i>Ananas comosus</i>) and Arabica coffee (<i>Coffea arabica</i>) industrial residue. To boost enzyme activity, laccase characterization was performed using <i>Ganoderma lucidum</i> under solid-state fermentation.

View Article and Find Full Text PDF

Secondary Alkylation of Arenes via the Borono-Catellani Strategy.

J Am Chem Soc

January 2025

Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, and TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.

A modular platform technology for the synthesis of α-aryl carbonyl derivatives via Borono-Catellani-type secondary alkylation of arenes is presented. This practical method features a broad substrate scope regarding aryl boronic acid catechol esters, secondary alkyl bromides, and diversified terminating reagents (e.g.

View Article and Find Full Text PDF

Ambient-pressure selective hydrogenation of unsaturated aldehydes and ketones into unsaturated alcohols in the water phase.

Dalton Trans

January 2025

Anhui Province Engineering Laboratory of Advanced Building Materials, College of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China.

A universal and green catalytic system for the hydrogenation of unsaturated aldehydes and ketones into the corresponding alcohols with the CC bonds retained under atmospheric hydrogen pressure in the water phase was realized by -functionalized amino ligand-stabilized ruthenium complexes (-PPhCHNHMe)[(CHNHR)]RuCl (R = H, Me, Et) and (-PPhCHNMe)[(CHNHEt)]RuCl with wide substrate compatibility and excellent functionality tolerance. The structural synergism between -PPhCHNHMe and (CHNHEt) achieves the enhanced performance, with a positive correlation with the electron density of the amino ligand.

View Article and Find Full Text PDF

Perspective on Flexible Organic Solar Cells for Self-Powered Wearable Applications.

ACS Appl Mater Interfaces

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

The growing advancement of wearable technologies and sophisticated sensors has driven the need for environmentally friendly and reliable energy sources with robust mechanical stability. Flexible organic solar cells (OSCs) have become promising substitutes for traditional energy solutions thanks to their remarkable mechanical flexibility and high power conversion efficiency (PCE). These unique properties allow flexible OSCs to seamlessly integrate with diverse devices and substrates, making them an excellent choice for powering various electronic devices by efficiently harvesting solar energy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!