A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PCA in High Dimensions: An orientation. | LitMetric

PCA in High Dimensions: An orientation.

Proc IEEE Inst Electr Electron Eng

Department of Statistics, University of California, Davis.

Published: August 2018

When the data are high dimensional, widely used multivariate statistical methods such as principal component analysis can behave in unexpected ways. In settings where the dimension of the observations is comparable to the sample size, upward bias in sample eigenvalues and inconsistency of sample eigenvectors are among the most notable phenomena that appear. These phenomena, and the limiting behavior of the rescaled extreme sample eigenvalues, have recently been investigated in detail under the spiked covariance model. The behavior of the bulk of the sample eigenvalues under weak distributional assumptions on the observations has been described. These results have been exploited to develop new estimation and hypothesis testing methods for the population covariance matrix. Furthermore, partly in response to these phenomena, alternative classes of estimation procedures have been developed by exploiting sparsity of the eigenvectors or the covariance matrix. This paper gives an orientation to these areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167023PMC
http://dx.doi.org/10.1109/JPROC.2018.2846730DOI Listing

Publication Analysis

Top Keywords

sample eigenvalues
12
covariance matrix
8
sample
5
pca high
4
high dimensions
4
dimensions orientation
4
orientation data
4
data high
4
high dimensional
4
dimensional multivariate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!