A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Humanization of Antibodies using a Statistical Inference Approach. | LitMetric

Humanization of Antibodies using a Statistical Inference Approach.

Sci Rep

Departamento de Física Teórica, Universidad de Zaragoza, Zaragoza, 50009, Spain.

Published: October 2018

Antibody humanization is a key step in the preclinical phase of the development of therapeutic antibodies, originally developed and tested in non-human models (most typically, in mouse). The standard technique of Complementarity-Determining Regions (CDR) grafting into human Framework Regions of germline sequences has some important drawbacks, in that the resulting sequences often need further back-mutations to ensure functionality and/or stability. Here we propose a new method to characterize the statistical distribution of the sequences of the variable regions of human antibodies, that takes into account phenotypical correlations between pairs of residues, both within and between chains. We define a "humanness score" of a sequence, comparing its performance in distinguishing human from murine sequences, with that of some alternative scores in the literature. We also compare the score with the experimental immunogenicity of clinically used antibodies. Finally, we use the humanness score as an optimization function and perform a search in the sequence space, starting from different murine sequences and keeping the CDR regions unchanged. Our results show that our humanness score outperforms other methods in sequence classification, and the optimization protocol is able to generate humanized sequences that are recognized as human by standard homology modelling tools.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6172228PMC
http://dx.doi.org/10.1038/s41598-018-32986-yDOI Listing

Publication Analysis

Top Keywords

murine sequences
8
humanness score
8
sequences
6
humanization antibodies
4
antibodies statistical
4
statistical inference
4
inference approach
4
approach antibody
4
antibody humanization
4
humanization key
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!