Rare variants of the FMN riboswitch class in and other bacteria exhibit altered ligand specificity.

RNA

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8103, USA.

Published: January 2019

Many bacteria use flavin mononucleotide (FMN) riboswitches to control the expression of genes responsible for the biosynthesis and transport of this enzyme cofactor or its precursor, riboflavin. Rare variants of FMN riboswitches found in strains of and some other bacteria typically control the expression of proteins annotated as transporters, including multidrug efflux pumps. These RNAs no longer recognize FMN, and differ from the original riboswitch consensus sequence at nucleotide positions normally involved in binding of the ribityl and phosphate moieties of the cofactor. Representatives of one of the two variant subtypes were found to bind the FMN precursor riboflavin and the FMN degradation products lumiflavin and lumichrome. Although the biologically relevant ligand sensed by these variant FMN riboswitches remains uncertain, our findings suggest that many strains of might use rare riboswitches to sense flavin degradation products and activate transporters for their detoxification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6298564PMC
http://dx.doi.org/10.1261/rna.067975.118DOI Listing

Publication Analysis

Top Keywords

fmn riboswitches
12
rare variants
8
variants fmn
8
control expression
8
precursor riboflavin
8
degradation products
8
fmn
7
fmn riboswitch
4
riboswitch class
4
class bacteria
4

Similar Publications

The use of lactic acid bacteria for developing functional foods is increasing for their ability to synthesize beneficial metabolites such as vitamin B (riboflavin, RF) and postbiotic compounds. Here, the spontaneous mutant FS54 B2 was isolated by treatment of the dextran-producing FS54 strain with roseoflavin. FS54 B2 overproduced RF (4.

View Article and Find Full Text PDF

Riboswitches are metabolite-binding RNA regulators that modulate gene expression at the levels of transcription and translation. One of the hallmarks of riboswitch regulation is that they undergo structural changes upon metabolite binding. While a lot of effort has been put to characterize how the metabolite is recognized by the riboswitch, there is still relatively little information regarding how ligand sensing is performed within a transcriptional context.

View Article and Find Full Text PDF

It is nowadays clear that RNA molecules can play active roles in several biological processes. As a result, an increasing number of RNAs are gradually being identified as potentially druggable targets. In particular, noncoding RNAs can adopt highly organized conformations that are suitable for drug binding.

View Article and Find Full Text PDF

Site-directed mutagenesis of bifunctional riboflavin kinase/FMN adenylyltransferase via CRISPR/Cas9 to enhance riboflavin production.

Synth Syst Biotechnol

September 2024

College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China.

Vitamin B is an essential water-soluble vitamin. For most prokaryotes, a bifunctional enzyme called FAD synthase catalyzes the successive conversion of riboflavin to FMN and FAD. In this study, the plasmid pNEW-AZ containing six key genes for the riboflavin synthesis was transformed into strain R2 with the deleted FMN riboswitch, yielding strain R5.

View Article and Find Full Text PDF

Bacteria have evolved complex transcriptional regulatory networks, as well as many diverse regulatory strategies at the RNA level, to enable more efficient use of metabolic resources and a rapid response to changing conditions. However, most RNA-based regulatory mechanisms are not well conserved across different bacterial species despite controlling genes important for virulence or essential biosynthetic processes. Here, we characterize the activity of, and assess the fitness benefit conferred by, twelve cis-acting regulatory RNAs (including several riboswitches and a T-box), in the opportunistic pathogen Streptococcus pneumoniae TIGR4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!