A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Endoplasmic Reticulum Homeostasis Is Modulated by the Forkhead Transcription Factor FKH-9 During Infection of . | LitMetric

Animals have evolved critical mechanisms to maintain cellular and organismal proteostasis during development, disease, and exposure to environmental stressors. The Unfolded Protein Response (UPR) is a conserved pathway that senses and responds to the accumulation of misfolded proteins in the endoplasmic reticulum (ER) lumen. We have previously demonstrated that the IRE-1-XBP-1 branch of the UPR is required to maintain ER homeostasis during larval development in the presence of pathogenic In this study, we identify loss-of-function mutations in four conserved transcriptional regulators that suppress the larval lethality of mutant animals caused by immune activation in response to infection by pathogenic bacteria: FKH-9, a forkhead family transcription factor; ARID-1, an ARID/Bright domain-containing transcription factor; HCF-1, a transcriptional regulator that associates with histone modifying enzymes; and SIN-3, a subunit of a histone deacetylase complex. Further characterization of FKH-9 suggests that loss of FKH-9 enhances resistance to the ER toxin tunicamycin and results in enhanced ER-associated degradation (ERAD). Increased ERAD activity of loss-of-function mutants is accompanied by a diminished capacity to degrade cytosolic proteasomal substrates and a corresponding increased sensitivity to the proteasomal inhibitor bortezomib. Our data underscore how the balance between ER and cytosolic proteostasis can be influenced by compensatory activation of ERAD during the physiological ER stress of infection and immune activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283152PMC
http://dx.doi.org/10.1534/genetics.118.301450DOI Listing

Publication Analysis

Top Keywords

transcription factor
12
endoplasmic reticulum
8
immune activation
8
reticulum homeostasis
4
homeostasis modulated
4
modulated forkhead
4
forkhead transcription
4
fkh-9
4
factor fkh-9
4
fkh-9 infection
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!