Semi-interpenetrating hydrogels from carboxymethyl guar gum and gelatin for ciprofloxacin sustained release.

Int J Biol Macromol

Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India. Electronic address:

Published: December 2018

The present work reports the synthesis of new generation semi-interpenetrating (s-IPN) hydrogels from carboxymethyl guar gum (CMGG) and gelatin with enhanced gel properties for suitable drug delivery applications. Hydrogels are three dimensional polymer networks which respond to water and ion interactions. Irreversible s-IPN hydrogels were prepared by CMGG interactions in gelatin and characterized in FT-IR, SEM and thermal studies. CMGG was synthesized by Hofmeister ion guided homogeneous phase reactions. The swelling kinetics of the newer s-IPN hydrogels followed Schott's pseudo second order model. Furthermore, the hydrogels were hemocompatible, non-cytotoxic and appropriate for applications in physiological environment. Model drug ciprofloxacin was loaded within the hydrogels and the drug release was found to be a combination of both diffusion and hydrogel degradation. New generation s-IPN biopolymer hydrogels of carboxymethyl guar gum and gelatin holds promise for its application as sustained drug delivery device or alternatively as hydrogel sorbents for bio-toxins and molecules of biomedical importance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2018.09.212DOI Listing

Publication Analysis

Top Keywords

hydrogels carboxymethyl
12
carboxymethyl guar
12
guar gum
12
s-ipn hydrogels
12
gum gelatin
8
drug delivery
8
hydrogels
7
semi-interpenetrating hydrogels
4
gelatin
4
gelatin ciprofloxacin
4

Similar Publications

Fast fabrication of stimuli-responsive MXene-based hydrogels for high-performance actuators with simultaneous actuation and self-sensing capability.

J Colloid Interface Sci

January 2025

Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037 China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037 China. Electronic address:

Poly(N-isopropylacrylamide) (PNIPAM) composite hydrogels have recently emerged as promising candidates for soft hydrogel actuators. However, developing a facile and fast method to obtain multifunctional PNIPAM hydrogel actuators with simulating biological versatility remains a major challenge. Herein, we developed a fast-redox initiation system to prepare PNIPAM/sodium carboxymethyl cellulose (CMC)/TCT MXene nanocomposite hydrogel with multidirectional actuating behaviors and improved mechanical properties.

View Article and Find Full Text PDF

Bifunctional modified bacterial cellulose-based hydrogel through sequence-dependent crosslinking towards enhanced antibacterial and cutaneous wound healing.

Int J Biol Macromol

January 2025

Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Tai'an 271018, PR China; School of Pharmacy, the Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China. Electronic address:

Chronic wounds caused by microbial infection have emerged as a major challenge on patients and medical health system. Bacterial cellulose (BC) characterized by its excellent biocompatibility and porous network, holds promise for addressing complex wound issues. However, lack of inherent antibacterial activity and cross-linking sites in the molecular network of BC have constrained its efficacy in hydrogel design and treatment of bacterial-infected wounds.

View Article and Find Full Text PDF

The rampant use of commercial antibiotics not only increases drug resistance but also causes a significant threat to human health. This study assessed the wound healing efficacy of hydrogels crafted from carboxymethyl chitosan (Cmc), polyglutamic acid (γ-PGA), tannic acid (TA), and carbazole (Car), with the aim of expediting the wound healing process. Hydrogels were formulated using Cmc/γ-PGA, Cmc/γ-PGA/TA, and Cmc/γ-PGA/TA/Car, followed by a thorough evaluation of their physicochemical attributes.

View Article and Find Full Text PDF

This study investigates the negative impact of climate change on water resources, specifically water for agricultural irrigation. It describes how to optimize swelling, gel properties and long-term water retention capacities of Na-CMC/PAAm hydrogels for managing drought stress of Sugar beet plants through techniques such as changing the composition, synthetic conditions and chemical modification. Gamma radiation-induced free radical copolymerization was used to synthesize superabsorbent hydrogels using sodium carboxymethyl cellulose (Na-CMC) and acrylamide (AAm).

View Article and Find Full Text PDF

CMCS-PVA@CA hydrogel dressing: A promoter of wound healing with MRSA virulence attenuation function.

Int J Biol Macromol

January 2025

College of Food Science and Engineering, Jilin University, Changchun 130062, PR China. Electronic address:

Traditional wound dressings, primarily centered on antimicrobial or bactericidal strategies, have inadvertently contributed to the rise of drug-resistant bacterial colonies at wound sites, thus prolonging the healing process. In this study, we developed an innovative hydrogel dressing, CMCS-PVA@CA, incorporating carboxymethyl chitosan (CMCS), polyvinyl alcohol (PVA), and cichoric acid (CA), specifically designed to treat skin wounds infected with methicillin-resistant Staphylococcus aureus (MRSA). Computational biology analyses reveal that CA exerts substantial anti-virulence activity by targeting serine/threonine phosphatase (Stp1), achieving an IC of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!