Novel bio-inspired materials derived from crystalline nanocellulose (CNC) have been tested as wood consolidants. A suspension of CNC, produced by acid hydrolysis of cellulose and used as such or mixed with lignin and/or siloxane derivatives (PDMS), was applied on rotted wood samples of Norway spruce. X-Ray diffraction analysis on CNC powder showed high crystallinity index. Dynamic light scattering (DLS) measurement indicated a nearly uniform particle size distribution with an average hydrodynamic diameter for pure CNC smaller than that in the mixtures. Raman and FTIR spectroscopies suggested interactions between lignin, PDMS and CNC components. The storage modulus of wood samples, measured by Dynamic Mechanical Analysis on the same specimen before and after consolidation, confirmed the efficiency of pure CNC, which displayed a considerable improvement of stiffness. A substantial increase of E' was observed particularly for most decayed classes. These results suggest a closer interaction between nanocellulose and decayed wood.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2018.08.132 | DOI Listing |
Foods
January 2025
School of Chinese Meteria Medica, Beijing University of Chinese Medicine, Northeast Corner of the Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing 102488, China.
Numerous reports have indicated that the type 3 resistant starch (RS3) derived from can regulate lipid metabolism. However, it remains unclear whether the type 5 resistant starch (RS5) exhibits similar effects. In this study, RS5 was prepared from native starch and lauric acid through a hydrothermal method for the first time, and its nutritional intervention effects on hyperlipidemia in mice were investigated.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Chemical Engineering, Barcelona East School of Engineering (EEBE), Polytechnic University of Catalonia, Av. Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain.
This study explores the characterization and application of poly(3-hydroxybutyrate--3-hydroxyvalerate) (PHBV) synthesized from organic residues, specifically milk and molasses. Six PHBV samples with varying 3-hydroxyvalerate (3HV) content (7%, 15%, and 32%) were analyzed to assess how 3HV composition influences their properties. Comprehensive characterization techniques, including NMR, FTIR, XRD, DSC, TGA, and tensile-stress test, were used to evaluate the molecular structure, thermal properties, crystalline structure, and mechanical behavior.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a highly promising biodegradable and bio-based thermoplastic recognized for its environmental benefits and potential versatility. However, its industrial adoption has been limited due to its inherent brittleness and suboptimal processability. Despite these challenges, PHBV's performance can be tailored for a wide range of applications through strategic modifications, particularly by blending it with other biodegradable polymers or reinforcing it with natural fibers and bio-based fillers.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Center of Engineering, Federal University of Pelotas, Pelotas 96010-610, Brazil.
This study investigates the sustainable use of spp. bark through different chemical (hydrothermal, acid, alkaline, and bleaching) and physical (milling) pretreatments in the production of sustainable films. Valorization of agro-industrial residues and the demand for sustainable materials pose challenges for environmentally responsible solutions.
View Article and Find Full Text PDFMolecules
December 2024
School of Life Science, Shanxi University, Taiyuan 030006, China.
Malic acid-derived polyamides, polyhydrazides, and hydrazides exhibit strong potential for a variety of biological applications. This study demonstrates the synthesis of cobalt, silver, copper, zinc, and iron particles by a facile chemical reduction approach utilizing malic acid-derived polyamides, polyhydrazides, and hydrazides as stabilizing and reducing agents. Comprehensive characterization of the particles was performed using UV-Vis spectroscopy, FTIR, XRD, SEM, and EDX analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!