The synthesis, characterization and environmental application of chitosan based material stable in acidic media for adsorption of anionic dyes were investigated. The adsorption material is chitosan nanoparticles immobilized on a fibrous carrier (CPF). The choice of optimal conditions for the preparation of chitosan particles and their immobilization on a chemically activated polyethylene terephthalate (PET) fiber is justified. Immobilized nanoparticles showed high adsorption rates and dye binding capacity (300-1050 mg g) depending on the dye type. Anionic phthalocyanine dyes having different molecular sizes, different nature and number of anionic groups were used as model adsorbates. The experimental isotherm data and a linear correlation coefficients (r > 0.99) have shown that the dyes adsorption on CPF is best predicted by the Langmuir isotherm. The adsorption rate has been found to conform to pseudo-second-order kinetics with a good correlation (R > 0.99) with intra-particle diffusion as one of the rate determining steps. It has been is established that the sorption rate and the limiting sorption capacity decrease with the increment in the dye molecule size. The process of adsorption of the dyes on the CPF is pH-insensitive in the pH range of 2-8. The adsorption saturated CPF could be effectively regenerated by a simple alkaline washing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2018.08.158 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia.
This study shows the efficiency of WH-C450, an adsorbent obtained from water hyacinth (WH) biomass, in the removal of sulfamethoxazole (SMX) from aqueous solutions. The process involves calcination of WH at 450 °C to produce an optimal adsorbent material capable of removing up to 73% of SMX and maximum SMX adsorption capacity of 132.23 mg/g.
View Article and Find Full Text PDFChem Asian J
January 2025
Fudan University, Department of Environmental Science and Engineering, Shanghai Handan Road 220, 200433, Shanghai, CHINA.
Novel Ce1-xMnxVO4 catalysts prepared via modified hydrothermal synthesis were used in selective catalytic reduction of NO using NH3 (NH3-SCR). The Ce1-xMnxVO4 catalysts displayed optimum NO removal efficiency at 250 oC. Physicochemical properties including crystal type, morphology, particle size, elemental composition, BET surface area, chemical bond, and valence state were studied by XRD, TEM, EDS, N2 adsorption-desorption, Raman spectroscopy, and XPS.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India.
In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Three composites based on Poly (meta-aminophenol) (PmAP), (3-aminopropyl) triethoxysilane (APTES) and graphene oxide (GO) were synthesized with initial GO dispersion of 3.3, 6.6, and 9.
View Article and Find Full Text PDFSci Rep
January 2025
Science and Technology on Vacuum and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou, 730000, China.
The Laser Interferometer Space Antenna (LISA) mission is designed to detect space gravitational wave sources in the millihertz band. A critical factor in the success of this mission is the residual acceleration noise metric of the internal test mass (TM) within the ultra-precise inertial sensors. Existing studies indicate that the coupling effects of residual gas and temperature gradient fluctuations significantly influence this metric, primarily manifesting as the radiometer effect and the outgassing effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!