Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Oxidative stress has been implicated in the pathogenesis of cardiac hypertrophy and associated heart failure. Cardiac tissue grows in response to pressure or volume overload, leading to wall thickening or chamber enlargement. If sustained, this condition will lead to a dysfunctional cardiac tissue and oxidative stress. Calorie restriction (CR) is a powerful intervention to improve health and delay aging. Here, we investigated whether calorie restriction in mice prevented isoproterenol-induced cardiac hypertrophy in vivo by avoiding reactive oxygen species (ROS) production and maintaining antioxidant enzymatic activity. Additionally, we investigated the involvement of mitochondrial ATP-sensitive K channels (mitoKATP) in cardiac hypertrophy. CR was induced by 40% reduction in daily calorie ingestion. After 3 weeks on CR or ad libitum (Control) feeding, Swiss mice were treated intraperitoneally with isoproterenol (30 mg/kg per day) for 8 days to induce hypertrophy. Isoproterenol-treated mice had elevated heart weight/tibia length ratios and cardiac protein levels. These gross hypertrophic markers were significantly reduced in CR mice. Cardiac tissue from isoproterenol-treated CR mice also produced less HO and had lower protein sulfydryl oxidation. Additionally, calorie restriction blocked hypertrophic-induced antioxidant enzyme (catalase, superoxide dismutase and glutathione peroxidase) activity repression during cardiac hypertrophy. MitoKATP opening was repressed in isolated mitochondria from hypertrophic hearts, in a manner sensitive to calorie restriction. Finally, mitoKATP inhibition significantly blocked the protective effects of calorie restriction. Altogether, our results suggest that CR improves intracellular redox balance during cardiac hypertrophy and prevents this process in a mechanism involving mitoKATP activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jnutbio.2018.08.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!