Insect growth is influenced by two major environmental factors: temperature and nutrient. These environmental factors are internally mediated by insulin/insulin-like growth factor signal (IIS) to coordinate tissue or organ growth. Maruca vitrata, a subtropical lepidopteran insect, migrates to different climate regions and feeds on various crops. The objective of this study was to determine molecular tools to predict growth rate of M. vitrata using IIS components. Four genes [insulin receptor (InR), Forkhead Box O (FOXO), Target of Rapamycin (TOR), and serine-threonine protein kinase (Akt)] were used to correlate their expression levels with larval growth rates under different environmental conditions. The functional association of IIS and larval growth was confirmed because RNA interference of these genes significantly decreased larval growth rate and pupal weight. Different rearing temperatures altered expression levels of these four IIS genes and changed their growth rate. Different nutrient conditions also significantly changed larval growth and altered expression levels of IIS components. Different local populations of M. vitrata exhibited significantly different larval growth rates under the same nutrient and temperature conditions along with different expression levels of IIS components. Under a constant temperature (25°C), larval growth rates showed significant correlations with IIS gene expression levels. Subsequent regression formulas of expression levels of four IIS components against larval growth rate were applied to predict growth patterns of M. vitrata larvae reared on different natural hosts and natural local populations reared on the same diet. All four formulas well predicted larval growth rates with some deviations. These results indicate that the IIS expression analysis explains the growth variation at the same temperature due to nutrient and genetic background.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171882PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204935PLOS

Publication Analysis

Top Keywords

larval growth
32
expression levels
24
growth rate
20
growth
16
iis components
16
growth rates
16
levels iis
16
iis
9
insect growth
8
maruca vitrata
8

Similar Publications

Relationships Between and the Rest of the World-Analysis of Dual-Species Biofilms and Infections.

Pathogens

January 2025

Department of Biomedicine and Environmental Research, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów 1j, 20-708 Lublin, Poland.

In this study, we investigated the interactions between and , , , and in mixed infections. Initially, these interactions were studied qualitatively and quantitatively in dual-species biofilms formed in vitro. The MTT assays, determination of the total CFU/mL, and SEM analysis showed that interacted differentially with the other spp.

View Article and Find Full Text PDF

This study assessed the bioconversion efficiency of larvae (BSFL) fed on food waste stored under different conditions, focusing on the nutritional and microbial quality of the resulting larval biomass. Food waste was prepared as a fresh diet (FD) or naturally contaminated and stored at 20-22 °C (OS-T, opened storage-tempered) or under refrigeration, at 5-8 °C (CS-C, closed storage-cooled). Refrigerated, closed storage (CS-C) led to the highest rates of waste reduction (91.

View Article and Find Full Text PDF

This study explores the optimisation of rearing substrates for black soldier fly larvae (BSFL). First, the ideal dry matter content of substrates was determined, comparing the standard 30% dry matter (DM) with substrates hydrated to their maximum water holding capacity (WHC). Substrates at maximal WHC yielded significantly higher larval survival rates ( = 0.

View Article and Find Full Text PDF

This study explored the thermal response of , an injurious insect pest present in many countries worldwide, at different controlled conditions. This species is responsible for several economic losses in soft fruit cultivations, develops on ripening fruits, and has the capability to quickly adapt to new territories and climates, closing multiple generations per year. Given its high invasive potential and the increasing need for low-impact control strategies, an in-depth exploration of the biology of this species and of the stage thermal response is fundamental.

View Article and Find Full Text PDF

The large-scale insect rearing sector is expected to grow significantly in the next few years, with L. (black soldier fly, BSF) playing a pivotal role. As with traditional livestock, it is essential to improve and ensure BSF welfare.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!