Background: Milk fat is one of the complex fat and most sensitive biochemical compounds towards auto-oxidation. To enhance the shelf life, milk is subjected to Ultra-high Temperature (UHT) treatment followed by aseptic packaging. During the storage, several chemical and biochemical changes take place in lipid fraction of UHT milk. In current investigation, the effect of UHT treatment and storage was determined by making a comparison in fatty acid profile, triglyceride composition, organic acids and lipid oxidation of the thermally treated and stored milk with raw milk, which was not reported in earlier investigations.

Methods: Raw milk samples were collected from the bulk storage facility of a dairy industry. The same milk was routed to UHT treatment and aseptically packaged samples were collected. The fatty acid profile, triglyceride composition, organic acids and lipid oxidation was determined in raw and UHT treated milk at 0, 30, 60 and 90 days. Fatty acid and triglyceride profile was determined on GC-MS while organic acids were determined by HPLC. For the measurement of induction period, professional Rancimat was used. Lipid oxidation was characterized through free fatty acids, peroxide value, anisidine value and conjugated dienes.

Results: Compositional attributes of milk remain unchanged during the entire length of storage. Concentrations of short-chain fatty acids in raw and UHT milk were 10.49% and 9.62%. UHT treatment resulted in 8.3% loss of short-chain fatty acids. Up to 30 days, storage did not have any significant effect on fatty acid profile of UHT milk. Concentration of medium-chain fatty acids in raw and UHT treated milk was 54.98% and 51.87%. After 30, 60 and 90 days of storage, concentration of medium chain fatty acids was found 51.23%, 47.23% and 42.82%, respectively. Concentration of C and C in raw and UHT milk was 26.86% and 25.43%, respectively. The loss of C and C in UHT treatment was 5.32%. After 30, 60 and 90 days of storage, the concentrations of C and C were 24.6%, 21.06% and 18.66%, respectively. Storage period of 30 days was found non-significant, while noticeable variations were found in triglyceride profile of 60 and 90 days old samples of UHT milk. UHT treatment and storage period significantly affected the concentration of organic acids in milk. After UHT treatment, concentration of lactic acid, acetic acid, citric acid, pyruvic acid, formic acid, succinic acid and oxalic acid increased by 3.45, 0.66, 3.57, 0.68, 2.24, 2.16 and 1.63 mg/100 g. Effect of storage period on the production of organic acids in UHT milk was non-significant up to 30 days. After 60 days of storage period, the increase in concentration of lactic acid, acetic acid, citric acid, pyruvic acid, formic acid, succinic acid and oxalic acid was 3.79, 0.75, 4.69, 0.78, 2.83, 3.03 and 2.38 mg/100 g. After 90 days of storage period, the increase in concentration of lactic acid, acetic acid, citric acid, pyruvic acid, formic acid, succinic acid and oxalic acid was 7.3, 2.18, 9.96, 3.58, 11.37, 5.22 and 5.96%. Free fatty acids content of raw, UHT treated and 90 days old milk were 0.08%, 0.11% and 0.19%. UHT treated version of milk showed similar peroxide value. While, the storage remarkably affected the peroxide value. After 30, 60 and 90 days, peroxide value was 0.42, 0.62 and 1.18 (MeqO/kg). Induction period of raw, UHT and stored milk was strongly correlated with peroxide value and fatty acid profile. Mean value of lipase activity in raw milk was 0.73 ± 0.06 μmoles/ml. UHT treatment significantly decreased the lipase activity. The lipase activity of milk immediately after the UHT treatment was 0.18 ± 0.02 μmoles/ml. Lipase activity of UHT milk after 30, 60 and 90 days of room temperature storage was 0.44 ± 0.03, 0.95 ± 0.07 and 1.14 ± 0.09 μmoles/ml. Color, flavor and smell score decreased through the storage of UHT milk for 90 days.

Conclusion: The results of this investigation revealed that fatty acid and triglyceride profile changed after 60 and 90 days of storage. Production of organic acids led to the drop of pH and sensory characteristics in UHT milk during the long-term storage. Induction period can be successfully used for the determination of anticipatory shelf life of UHT milk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6169077PMC
http://dx.doi.org/10.1186/s12944-018-0869-3DOI Listing

Publication Analysis

Top Keywords

uht milk
40
uht treatment
36
acid
27
milk
26
uht
24
fatty acid
24
organic acids
24
raw uht
24
fatty acids
24
storage period
20

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!