Comparative analysis of cytokinin response factors in Brassica diploids and amphidiploids and insights into the evolution of Brassica species.

BMC Genomics

Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.

Published: October 2018

AI Article Synopsis

Article Abstract

Background: Cytokinin is a classical phytohormone that plays important roles in numerous plant growth and development processes. In plants, cytokinin signals are transduced by a two-component system, which involves many genes, including cytokinin response factors (CRFs). Although CRFs take vital part in the growth of Arabidopsis thaliana and Solanum lycopersicum, little information of the CRFs in the Brassica U-triangle species has been known yet.

Results: We identified and compared 141 CRFs in the diploids and amphidiploids of Brassica species, including B. rapa, B. oleracea, B. nigra, B. napus, and B. juncea. For all the 141 CRFs, the sequence and structure analysis, physiological and biochemical characteristics analysis were performed. Meanwhile, the Ka/Ks ratios of orthologous and paralogous gene pairs were calculated, which indicated the natural selective pressure upon the overall length or a certain part of the CRFs. The expression profiles of CRFs in different tissues and under various stresses were analyzed in B. oleracea, B. nigra, and B. napus. The similarities and differences in gene sequences and expression profiles among the homologous genes of these species were discussed. In addition, AtCRF11 and its ortholog BrCRF11a were identified to be related to primary root growth in Arabidopsis.

Conclusion: This study performed a genome-wide comparative analysis of the CRFs in the diploids and amphidiploids of the Brassica U-triangle species. Many similarities and differences in gene sequences and expression profiles existed among the CRF homologous genes of these species. In the bioinformatics analysis, we found the close relativity of the CRF homologous genes in the Brassica A and C genomes and the distinctiveness of those in the B genome, and the CRF homologous genes in B subgenome were considerably influenced by the A subgenome of B. juncea. In addition, we identified a new function of the Clade V CRFs related to root growth, which also clarified the functional conservation between Arabidopsis and B. rapa. These results not only offer useful information on the functional analysis of CRFs but also provide new insights into the evolution of Brassica species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6171139PMC
http://dx.doi.org/10.1186/s12864-018-5114-yDOI Listing

Publication Analysis

Top Keywords

homologous genes
16
diploids amphidiploids
12
brassica species
12
expression profiles
12
crf homologous
12
crfs
10
comparative analysis
8
cytokinin response
8
response factors
8
insights evolution
8

Similar Publications

Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

[Solid, endometrial-like and transitional growth patterns of ovarian high-grade serous carcinoma: a clinicopathological analysis of 25 cases].

Zhonghua Bing Li Xue Za Zhi

February 2025

Department of Pathology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China.

To investigate the clinicopathological characteristics of solid, endometrial-like and transitional (SET) cell growth subtype in high-grade serous ovarian carcinoma (HGSC). Clinical data of 25 cases of HGSC-SET were collected from January 2020 to March 2024 at the Affiliated Suzhou Hospital of Nanjing Medical University, and their histological features were analyzed. Immunohistochemical stains were used to analyze the expression of ER, PR, PAX8, WT-1, p16, p53 and Ki-67.

View Article and Find Full Text PDF

Bombyx mori bidensovirus (BmBDV), a significant pathogen in the sericulture industry, holds a unique taxonomic position due to its distinct segmented single-stranded DNA (ssDNA) genome and the presence of a self-encoding DNA polymerase. However, the functions of viral non-structural proteins, such as NS2, remain unknown. This protein is hypothesized to play a role in viral replication and pathogenesis.

View Article and Find Full Text PDF

: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a five-year survival rate of approximately 13% for advanced stages. While the majority of PDAC cases are sporadic, a significant subset is attributable to hereditary and familial predispositions, accounting for approximately 25% of cases. This article synthesizes recent advancements in the understanding, detection, and management of hereditary pancreatic cancer (PC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!