Honey bee [Apis mellifera L. (Hymenoptera: Apidae)] queens are polyandrous, mating with an average 12 males (drones). Polyandry has been shown to confer benefits to queens and the colonies they head, including avoidance of inviable brood that can arise via sex locus homozygosity, increased resilience to pests and pathogens, and increased survival and productivity, leading to improved colony-level fitness. Queens with an effective mating frequency (ke) greater than 7 are considered adequately mated, whereas queens that fall below this threshold head colonies that have increased likelihood of failure and may be less productive for beekeepers. We determined ke in queens produced in early Spring and Autumn by five Australian commercial queen producers to determine whether the queens they produced were suitably mated. Drone populations are low at these times of year, and therefore, there is an increased risk that queens would fall below the ke > 7 threshold. We found that 33.8% of Autumn-produced queens did not meet the threshold, whereas 93.8% of Spring queens were adequately mated. The number of colonies contributing drones to the mating pool was similarly high in both seasons, suggesting that although many colonies have drones, their numbers may be decreased in Autumn and management strategies may be required to boost drone numbers at this time. Finally, queens had similar levels of homozygosity to workers, and inbreeding coefficients were very low, suggesting that inbreeding is not a problem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jee/toy308 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!