Three new Ru(ii) bioconjugates with the C-terminal hexapeptide sequence of neurotensin, RRPYIL, namely trans,cis-RuCl2(CO)2(cppH-RRPYIL-κNp) (7), [Ru([9]aneS3)(cppH-RRPYIL-κNp)(PTA)](Cl)2 (8), and [Ru([9]aneS3)Cl(cppH-RRPYIL-κNp)]Cl (11), where cppH is the asymmetric linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid, were prepared in pure form and structurally characterized in solution. The cppH linker is capable of forming stereoisomers (i.e. linkage isomers), depending on whether the nitrogen atom ortho (No) or para (Np) to the carboxylate on C4 in the pyrimidine ring binds the metal ion. Thus, one of the aims of this work was to obtain pairs of stereoisomeric conjugates and investigate their biological (anticancer, antibacterial) activity. A thorough NMR characterization clearly indicated that in all cases exclusively Np conjugates were obtained in pure form. In addition, the NMR studies showed that, whereas in DMSO-d6 each conjugate exists as a single species, in D2O two (7) or even three if not four (8 and 11) very similar stable species form (each one corresponding to an individual compound). Similar results were observed for the cppH-RRPYIL ligand alone. Overall, the NMR findings are consistent with the occurrence of a strong intramolecular stacking interaction between the phenol ring of tyrosine and the pyridyl ring of cppH. Such stacking interactions between aromatic rings are expected to be stronger in water. This interaction leads to two stereoisomeric species in the free cppH-RRPYIL ligand and in the bioconjugate 7, and is somehow modulated by the less symmetrical Ru coordination environments in 8 and 11, affording three to four very similar species.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8dt03575jDOI Listing

Publication Analysis

Top Keywords

cpph linker
8
2-2'-pyridylpyrimidine-4-carboxylic acid
8
pure form
8
cpph-rrpyil ligand
8
cpph
5
ruii-peptide bioconjugates
4
bioconjugates cpph
4
linker cpph
4
cpph 2-2'-pyridylpyrimidine-4-carboxylic
4
acid synthesis
4

Similar Publications

Three new Ru(ii) bioconjugates with the C-terminal hexapeptide sequence of neurotensin, RRPYIL, namely trans,cis-RuCl2(CO)2(cppH-RRPYIL-κNp) (7), [Ru([9]aneS3)(cppH-RRPYIL-κNp)(PTA)](Cl)2 (8), and [Ru([9]aneS3)Cl(cppH-RRPYIL-κNp)]Cl (11), where cppH is the asymmetric linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid, were prepared in pure form and structurally characterized in solution. The cppH linker is capable of forming stereoisomers (i.e.

View Article and Find Full Text PDF

We investigated the reactivity of three Ru(ii) precursors -trans,cis,cis-[RuCl2(CO)2(dmso-O)2], cis,fac-[RuCl2(dmso-O)(dmso-S)3], and trans-[RuCl2(dmso-S)4] - towards the diimine linker 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) or its parent compound 4-methyl-2-(2'-pyridyl)pyrimidine ligand (mpp), in which a methyl group replaces the carboxylic group on the pyrimidine ring. In principle, both cppH and mpp can originate linkage isomers, depending on how the pyrimidine ring binds to ruthenium through the nitrogen atom ortho (N(o)) or para (N(p)) to the group in position 4. The principal aim of this work was to establish a spectroscopic fingerprint for distinguishing the coordination mode of cppH/mpp also in the absence of an X-ray structural characterization.

View Article and Find Full Text PDF

Under hydro(solvo)thermal conditions, two 4-(4-carboxyphenoxy)phthalate-based three-dimensional (3-D) coordination polymers: [Cd3(cpph)2(bpa)2(H2O)]·0.5H2O (cpph = 4-(4-carboxyphenoxy)phthalate, bpa = 1,2-bis(4-pyridyl)ethane) 1, and [H2(bpp)][Mn2(cpph)2(H2O)2] (bpp = 1,2-bis(4-piperidyl)propane) 2 were isolated. In both compounds, the cpph molecules extend the metal ions into a 3-D network: a (4,6)-connected net for 1 and a simple 6-connected net with a pcu topology for 2.

View Article and Find Full Text PDF

For the first time the two linkage isomers of a Ru(ii) complex with 2-(2'-pyridyl)pyrimidine-4-carboxylic acid (cppH) - that form in comparable amounts - have been fully characterized individually. The X-ray structure of each isomer is related to its NMR spectrum in solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!