Introduction: Adverse effects of medications taken during pregnancy are traditionally studied through post-marketing pregnancy registries, which have limitations. Social media data may be an alternative data source for pregnancy surveillance studies.

Objective: The objective of this study was to assess the feasibility of using social media data as an alternative source for pregnancy surveillance for regulatory decision making.

Methods: We created an automated method to identify Twitter accounts of pregnant women. We identified 196 pregnant women with a mention of a birth defect in relation to their baby and 196 without a mention of a birth defect in relation to their baby. We extracted information on pregnancy and maternal demographics, medication intake and timing, and birth defects.

Results: Although often incomplete, we extracted data for the majority of the pregnancies. Among women that reported birth defects, 35% reported taking one or more medications during pregnancy compared with 17% of controls. After accounting for age, race, and place of residence, a higher medication intake was observed in women who reported birth defects. The rate of birth defects in the pregnancy cohort was lower (0.44%) compared with the rate in the general population (3%).

Conclusions: Twitter data capture information on medication intake and birth defects; however, the information obtained cannot replace pregnancy registries at this time. Development of improved methods to automatically extract and annotate social media data may increase their value to support regulatory decision making regarding pregnancy outcomes in women using medications during their pregnancies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426821PMC
http://dx.doi.org/10.1007/s40264-018-0731-6DOI Listing

Publication Analysis

Top Keywords

birth defects
20
social media
16
media data
12
medication intake
12
pregnancy
10
birth
8
medications pregnancy
8
pregnancy registries
8
data alternative
8
source pregnancy
8

Similar Publications

Metabolic profiling reveals altered amino acid and fatty acid metabolism in children with Williams Syndrome.

Sci Rep

December 2024

Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Children's Regional Medical Center, National Clinical Research Center for Child Health, 3333 Binsheng Road, Hangzhou, 310052, Zhejiang Province, China.

Williams Syndrome (WS) is a rare neurodevelopmental disorder with a prevalence of 1 in 7500 to 1 in 20,000 individuals, caused by a microdeletion in chromosome 7q11.23. Despite its distinctive clinical features, the underlying metabolic alterations remain largely unexplored.

View Article and Find Full Text PDF

Although the connection between muscular strength and flatfoot condition is well-established, the impact of corrective exercises on these muscles remains inadequately explored. This study aimed to assess the impact of intrinsic- versus extrinsic-first corrective exercise programs on muscle morphometry and navicular drop in boys with flexible flatfoot. Twenty-five boys aged 10-12 with flexible flatfoot participated, undergoing a 12-week corrective exercise program, with a shift in focus at six weeks.

View Article and Find Full Text PDF

This study aimed to identify imaging risk factors for spinal cord injury without radiologic abnormalities (SCIWORA) in children. We retrospectively analyzed the medical records and magnetic resonance imaging (MRI) findings of children with SCIWORA admitted to our hospital between January 1, 2012, and September 30, 2022. Univariate and binary logistic regression analyses were used to evaluate the prognostic impact of various factors including MRI type, maximum cross-sectional area of spinal cord injury, injury length, injury signal intensity ratio.

View Article and Find Full Text PDF

Background: In middle-income countries, healthcare systems face unique challenges in ensuring timely antenatal detection of congenital abnormalities that require pediatric surgical intervention. Early detection can significantly improve outcomes, yet resource constraints often limit access to diagnostic technologies. This study evaluates the antenatal detection rate of congenital abnormalities referred to pediatric surgical services in three Malaysian tertiary centers and examines its effect on maternal anxiety.

View Article and Find Full Text PDF

Microtubules are dynamic cytoskeletal structures essential for cell architecture, cellular transport, cell motility, and cell division. Due to their dynamic nature, known as dynamic instability, microtubules can spontaneously switch between phases of growth and shortening. Disruptions in microtubule functions have been implicated in several diseases, including cancer, neurodegenerative disorders such as Alzheimer's and Parkinson's disease, and birth defects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!