Correction for 'Development of oligonucleotide-based antagonists of Ebola virus protein 24 inhibiting its interaction with karyopherin alpha 1' by Keisuke Tanaka et al., Org. Biomol. Chem., 2018, 16, 4456-4463.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8ob90140fDOI Listing

Publication Analysis

Top Keywords

oligonucleotide-based antagonists
8
antagonists ebola
8
ebola virus
8
virus protein
8
protein inhibiting
8
inhibiting interaction
8
interaction karyopherin
8
karyopherin alpha
8
correction development
4
development oligonucleotide-based
4

Similar Publications

Single phage proteins sequester signals from TIR and cGAS-like enzymes.

Nature

November 2024

State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.

Prokaryotic anti-phage immune systems use TIR and cGAS-like enzymes to produce 1''-3'-glycocyclic ADP-ribose (1''-3'-gcADPR) and cyclic dinucleotide (CDN) and cyclic trinucleotide (CTN) signalling molecules, respectively, which limit phage replication. However, how phages neutralize these distinct and common systems is largely unclear. Here we show that the Thoeris anti-defence proteins Tad1 and Tad2 both achieve anti-cyclic-oligonucleotide-based anti-phage signalling system (anti-CBASS) activity by simultaneously sequestering CBASS cyclic oligonucleotides.

View Article and Find Full Text PDF

Targeting oncogenic transcriptional factor c-myc by oligonucleotide PROTAC for the treatment of hepatocellular carcinoma.

Eur J Med Chem

December 2024

Center for Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China. Electronic address:

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, but effective therapeutic strategies are limited. Transcriptional factor c-Myc plays an oncogenic role in tumorigenesis and is an attractive target for HCC treatment. However, targeted therapy against c-Myc remains challenging.

View Article and Find Full Text PDF

Targeting EGLN2/PHD1 protects motor neurons and normalizes the astrocytic interferon response.

Cell Rep

September 2024

KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium. Electronic address:

Article Synopsis
  • Researchers found that inflammation and energy problems can harm nerve cells in ALS.
  • They discovered that lowering a protein called EGLN2 helped protect these nerve cells in zebrafish and mice.
  • The study showed that EGLN2 is important for controlling inflammation in brain cells of ALS patients.
View Article and Find Full Text PDF

O-Methylguanine-DNA methyltransferase (MGMT) is a DNA repair enzyme that is overexpressed in certain tumors and is associated with resistance to the DNA alkylating agent temozolomide. MGMT inhibitors show potential in combating temozolomide resistance, but current assays for MGMT enzyme activity and inhibition, primarily oligonucleotide-based and fluorescent probe-based, are laborious and costly. The clinical relevance of temozolomide therapy calls for more convenient methodologies to study MGMT inhibition.

View Article and Find Full Text PDF

Direct-acting antiviral (DAA) drugs have been shown to effectively reduce viral load and cure a high proportion of hepatitis C virus (HCV) infections. However, costs associated with the course of therapy and any possible adverse effects should also be considered. It is important to acknowledge, moreover, that certain groups may not be eligible for treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!