A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Insulin-Stimulated Bone Blood Flow and Bone Biomechanical Properties Are Compromised in Obese, Type 2 Diabetic OLETF Rats. | LitMetric

Type 2 diabetes (T2D) increases skeletal fragility and fracture risk; however, the underlying mechanisms remain to be identified. Impaired bone vascular function, in particular insulin-stimulated vasodilation and blood flow is a potential, yet unexplored mechanism. The purpose of this study was to determine the effects of T2D on femoral biomechanical properties, trabecular microarchitecture, and insulin-stimulated bone vasodilation by comparison of hyperphagic Otsuka Long-Evans Tokushima Fatty (OLETF) rats with normoglycemic control OLETF rats. Four-week old, male OLETF rats were randomized to two groups: type 2 diabetes (O-T2D) or normoglycemic control (O-CON). O-T2D were allowed access to a rodent chow diet and O-CON underwent moderate caloric restriction (30% restriction relative to intake of O-T2D) to maintain normal body weight (BW) and glycemia until 40 weeks of age. Hyperphagic O-T2D rats had significantly greater BW, body fat, and blood glucose than O-CON. Total cross-sectional area (Tt.Ar), cortical area (Ct.Ar), Ct.Ar/Tt.Ar, and polar moment of inertia of the mid-diaphyseal femur adjusted for BW were greater in O-T2D rats versus O-CON. Whole-bone biomechanical properties of the femur assessed by torsional loading to failure did not differ between O-T2D and O-CON, but tissue-level strength and stiffness adjusted for BW were reduced in O-T2D relative to O-CON. Micro-computed tomography (μCT) of the distal epiphysis showed that O-T2D rats had reduced percent bone volume, trabecular number, and connectivity density, and greater trabecular spacing compared with O-CON. Basal tibial blood flow assessed by microsphere infusion was similar in O-T2D and O-CON, but the blood flow response to insulin stimulation in both the proximal epiphysis and diaphyseal marrow was lesser in O-T2D compared to O-CON. In summary, impaired insulin-stimulated bone blood flow is associated with deleterious changes in bone trabecular microarchitecture and cortical biomechanical properties in T2D, suggesting that vascular dysfunction might play a causal role in diabetic bone fragility. © 2017 The Authors. Published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6124191PMC
http://dx.doi.org/10.1002/jbm4.10007DOI Listing

Publication Analysis

Top Keywords

blood flow
20
biomechanical properties
16
oletf rats
16
insulin-stimulated bone
12
o-t2d rats
12
o-t2d
10
o-con
9
bone blood
8
bone
8
type diabetes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!