Protein network analysis reveals selectively vulnerable regions and biological processes in FTD.

Neurol Genet

Department of Neurology (L.W.B., N.Z.R.S., E.G.G., Z.A.M., B.L.M., W.W.S., J.S.Y.), Memory and Aging Center, University of California, San Francisco; Department of Psychiatry (C.M.K., N.W., A.O.-K.), Washington University, St. Louis, MO; School of Pharmacy (C.M., P.L.), University of Reading, Reading, UK; Laboratory of Neurogenetics (P.M.), Texas Tech University Health Science Center, Lubbock; Department of Molecular Neuroscience (C.M., J.H., P.L., R.F.), UCL Institute of Neurology, London, UK; Department of Radiology and Biomedical Imaging, Neuroradiology Section (C.P.H., R.S.D.), University of California, San Francisco; and Department of Neurology (S.E.B.), University of California, San Francisco.

Published: October 2018

Objective: The neuroanatomical profile of behavioral variant frontotemporal dementia (bvFTD) suggests a common biological etiology of disease despite disparate pathologic causes; we investigated the genetic underpinnings of this selective regional vulnerability to identify new risk factors for bvFTD.

Methods: We used recently developed analytical techniques designed to address the limitations of genome-wide association studies to generate a protein interaction network of 63 bvFTD risk genes. We characterized this network using gene expression data from healthy and diseased human brain tissue, evaluating regional network expression patterns across the lifespan as well as the cell types and biological processes most affected in bvFTD.

Results: We found that bvFTD network genes show enriched expression across the human lifespan in vulnerable neuronal populations, are implicated in cell signaling, cell cycle, immune function, and development, and are differentially expressed in pathologically confirmed frontotemporal lobar degeneration cases. Five of the genes highlighted by our differential expression analyses, , , , , and , appear to be novel bvFTD risk loci.

Conclusions: Our findings suggest that the cumulative burden of common genetic variation in an interacting protein network expressed in specific brain regions across the lifespan may influence susceptibility to bvFTD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167176PMC
http://dx.doi.org/10.1212/NXG.0000000000000266DOI Listing

Publication Analysis

Top Keywords

protein network
8
biological processes
8
bvftd risk
8
bvftd
5
network
5
network analysis
4
analysis reveals
4
reveals selectively
4
selectively vulnerable
4
vulnerable regions
4

Similar Publications

Proteomic Insight Into Alzheimer's Disease Pathogenesis Pathways.

Proteomics

January 2025

Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Alzheimer's disease (AD) is a leading cause of dementia, but the pathogenesis mechanism is still elusive. Advances in proteomics have uncovered key molecular mechanisms underlying AD, revealing a complex network of dysregulated pathways, including amyloid metabolism, tau pathology, apolipoprotein E (APOE), protein degradation, neuroinflammation, RNA splicing, metabolic dysregulation, and cognitive resilience. This review examines recent proteomic findings from AD brain tissues and biological fluids, highlighting potential biomarkers and therapeutic targets.

View Article and Find Full Text PDF

Exploring novel drug targets for erectile dysfunction through plasma proteome with genome.

Sex Med

December 2024

Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China.

Background: Currently, the treatment and prevention of erectile dysfunction (ED) remain highly challenging.

Aim: This study conducted a systematic druggable genome-wide Mendelian randomization (MR) analysis to identify potential therapeutic targets for ED.

Methods: A proteome-wide MR approach was employed to investigate the causal effects of plasma proteins on ED.

View Article and Find Full Text PDF

Cell surface proteins (surfaceome) represent key signalling and interaction molecules for therapeutic targeting, biomarker profiling and cellular phenotyping in physiological and pathological states. Here, we employed coronary artery perfusion with membrane-impermeant biotin to label and capture the surface-accessible proteome in the neo-native (intact) heart. Using quantitative proteomics, we identified 701 heart cell surfaceome accessible by the coronary artery, including receptors, cell surface enzymes, adhesion and junctional molecules.

View Article and Find Full Text PDF

Sulforaphane (SF) is a sulfur (S)-containing isothiocyanate found in cruciferous vegetables and is known for its potent anticancer properties. Broccoli sprouts, in particular, are considered safe and healthy dietary choices due to their high SF content and other beneficial biological activities, such as enhanced metabolite ingestion. The application of selenium (Se) is an excellent approach to enhance the abundance of SF.

View Article and Find Full Text PDF

Recent studies on head and neck squamous cell carcinoma (HNSCC) tumorigenesis have revealed several dysregulated molecular pathways. The phosphatidylinositol-3-kinase (PI3K) signaling pathway is frequently activated in HNSCC, making it an attractive target for therapies. PHT-427 is a dual inhibitor of PI3K and the mammalian target of AKT/PDK1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!