Mutations are the ultimate basis of evolution, yet their occurrence rate is known only for few species. We directly estimated the spontaneous mutation rate and the mutational spectrum in the nonbiting midge with a new approach. Individuals from ten mutation accumulation lines over five generations were deep genome sequenced to count de novo mutations that were not present in a pool of F1 individuals, representing parental genotypes. We identified 51 new single site mutations of which 25 were insertions or deletions and 26 single nucleotide mutations. This shift in the mutational spectrum compared to other organisms was explained by the high A/T content of the species. We estimated a haploid mutation rate of 2.1 × 10 (95% confidence interval: 1.4 × 10 - 3.1 × 10) that is in the range of recent estimates for other insects and supports the drift barrier hypothesis. We show that accurate mutation rate estimation from a high number of observed mutations is feasible with moderate effort even for nonmodel species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6121839PMC
http://dx.doi.org/10.1002/evl3.8DOI Listing

Publication Analysis

Top Keywords

mutation rate
16
spontaneous mutation
8
mutation accumulation
8
accumulation lines
8
mutational spectrum
8
mutation
6
rate
5
mutations
5
direct estimation
4
estimation spontaneous
4

Similar Publications

Comprehensive genomic profiling (CGP) is increasingly used as a clinical laboratory test and being applied to cancer treatment; however, standardization and external quality assessments (EQA) have not been fully developed. This study performed cost-effective EQA and proficiency tests (PT) for CGP testing among multiple institutions those belong to the EQA working group of Japan Association for Clinical Laboratory Science (JACLS). This study revealed that preanalytical processes, such as derived nucleic acids (NA) extraction from formalin fixed paraffine embedded (FFPE) samples, are critical.

View Article and Find Full Text PDF

Enhancing virus-mediated genome editing for cultivated tomato through low temperature.

Plant Cell Rep

January 2025

Department of Horticultural Science, Kyungpook National University, Daegu, 41566, Republic of Korea.

Viral vector-mediated gene editing is enhanced for cultivated tomato under low temperature conditions, enabling higher mutation rates, heritable, and virus-free gene editing for efficient breeding. The CRISPR/Cas system, a versatile gene-editing tool, has revolutionized plant breeding by enabling precise genetic modifications. The development of robust and efficient genome-editing tools for crops is crucial for their application in plant breeding.

View Article and Find Full Text PDF

Background: Genetic variation in the non-recombining part of the human Y chromosome has provided important insight into the paternal history of human populations. However, a significant and yet unexplained branch length variation of Y chromosome lineages has been observed, notably amongst those that are highly diverged from the human reference Y chromosome. Understanding the origin of this variation, which has previously been attributed to changes in generation time, mutation rate, or efficacy of selection, is important for accurately reconstructing human evolutionary and demographic history.

View Article and Find Full Text PDF

Purpose: Circulating tumor DNA (ctDNA) analysis is an alternative to tissue biopsy for genotyping in various cancers. We aimed to establish a plasma ctDNA sequencing assay, then evaluate its clinical utility in advanced urothelial cancer (UC).

Materials And Methods: This study included 82 patients with muscle-invasive or metastatic UC.

View Article and Find Full Text PDF

Natural Mutation of PrfA K10N/T151A Enhances Serotype 4h Virulence.

Foodborne Pathog Dis

January 2025

College of Biological Sciences and Technology, Yangzhou University, Yangzhou, China.

PrfA is a key virulence regulator for (Lm) responding to host environment. Here we report that the natural mutation in PrfA enhanced the pathogenicity of hypervirulent serotype 4h . We characterized the phylogenetic tree of PrfA, and found that PrfA prevalently distributed in all serotype 4h isolates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!