A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Production of Low-Potassium Content Melon Through Hydroponic Nutrient Management Using Perlite Substrate. | LitMetric

Chronic kidney disease patients are restricted to foods with high potassium content but our daily diets including melon are rich in potassium. Therefore, we investigated the production of low-potassium melon through hydroponic nutrient management in soilless culture using perlite substrate during autumn season of 2012, 2014 and spring season of 2016. In the first study, melon plants were supplied with 50% standard 'Enshi' nutrient solution until first 2 weeks of culture. In 3rd and 4th week, amount of applied potassium was 50, 75, 100, and 125% of required potassium nitrate for each plant per week (based on our previous study). It was found that, melon plants grown with 50% of its required potassium nitrate produced fruits with about 53% low-potassium compared to control. In the following study, four cultivars viz. Panna, Miyabi shunjuukei, Miyabi akifuyu412, and Miyabi soushun banshun309 were evaluated for their relative suitability of low-potassium melon production. Results showed insignificant difference in fruit potassium content among the cultivars used. Source of potassium fertilizer as potassium nitrate and potassium sulfate and their restriction (from 1 or 2 weeks after anthesis) were also studied. There were no influences on fruit potassium content and yield due to sources of potassium fertilizer and restriction timings. In our previous studies, it was evident that potassium can be translocated from leaves to fruits at maturity when it was supplied nutrient without potassium. Thus, we also studied total number of leaves per plant (23, 24, 25, 26, and 27 leaves per plant). It was evident that fruit potassium, yield, and quality were not influenced significantly due to differences in number of leaves per plant. These studies showed that restriction of potassium nitrate in the culture solution from anthesis to harvest could produce melon fruits with low-potassium (>20%) content compared to potassium content of greenhouse grown melon (340 mg/100 g FW). Quality testing and clinical validation of low-potassium melon also showed positive responses compared to greenhouse grown melon.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157450PMC
http://dx.doi.org/10.3389/fpls.2018.01382DOI Listing

Publication Analysis

Top Keywords

potassium
16
potassium content
16
potassium nitrate
16
low-potassium melon
12
fruit potassium
12
leaves plant
12
melon
10
production low-potassium
8
melon hydroponic
8
hydroponic nutrient
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!