Maintenance of the bacterial homeostasis initially emanates from interactions between proteins and the bacterial nucleoid. Investigating their spatial correlation requires high spatial resolution, especially in tiny, highly confined and crowded bacterial cells. Here, we present super-resolution microscopy using a palette of fluorescent labels that bind transiently to either the membrane or the nucleoid of fixed E. coli cells. The presented labels are easily applicable, versatile and allow long-term single-molecule super-resolution imaging independent of photobleaching. The different spectral properties allow for multiplexed imaging in combination with other localisation-based super-resolution imaging techniques. As examples for applications, we demonstrate correlated super-resolution imaging of the bacterial nucleoid with the position of genetic loci, of nascent DNA in correlation to the entire nucleoid, and of the nucleoid of metabolically arrested cells. We furthermore show that DNA- and membrane-targeting labels can be combined with photoactivatable fluorescent proteins and visualise the nano-scale distribution of RNA polymerase relative to the nucleoid in drug-treated E. coli cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170473PMC
http://dx.doi.org/10.1038/s41598-018-33052-3DOI Listing

Publication Analysis

Top Keywords

super-resolution imaging
16
bacterial nucleoid
8
coli cells
8
nucleoid
7
super-resolution
5
imaging
5
toolbox multiplexed
4
multiplexed super-resolution
4
imaging coli
4
coli nucleoid
4

Similar Publications

Terahertz (THz) lens constitutes a vital component in the THz system. Metasurfaces-based THz metalenses and classical bulky lenses are severely constrained by chromatic/ spherical aberration and the diffraction limit. Consequently, achromatic super-resolution THz lenses are urgently needed.

View Article and Find Full Text PDF
Article Synopsis
  • Medical volume data is increasing significantly, leading to challenges in organizing, storing, and processing large datasets.
  • The proposed solution is an end-to-end architecture for data compression using deep learning, featuring modules for downsampling, implicit neural representation, and super-resolution.
  • Experimental results show impressive compression rates of up to 97.5% while preserving high reconstruction quality, making it efficient for managing large medical data on GPUs.
View Article and Find Full Text PDF

Background: Alzheimer's disease (AD), an untreatable synaptic disorder, is the most frequent cause of dementia. It is still unclear which mechanisms drive the early synapse dysfunction in the most common late-onset AD (LOAD). The second most important LOAD risk gene identified, BIN1, is an endocytic regulator.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is diagnosed via postmortem detection of extracellular amyloid beta (Aβ) plaques or oligomers and intracellular hyperphosphorylated tau. These canonical pathologies are key players in AD etiology. A complementary line of research suggests that common human pathogens serve as the initial seeding agents which facilitate the pathologies of AD.

View Article and Find Full Text PDF

Extracellular beta-amyloid aggregation and inflammation are in a complex and not fully understood interplay during hyperphosphorylated tau aggregation and pathogenesis of Alzheimer's disease. Our group has previously shown that an immune challenge with tumour necrosis factor alpha can alter extracellular beta-sheet containing aggregates in human-induced pluripotent stem cell-derived cortical neurons carrying familial Alzheimer's disease-related presenilin 1 mutations. Here, using single-molecule detection and super-resolution imaging techniques, we quantified and characterized the intra- and extracellular beta-amyloid and AT8-positive tau aggregates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!