Evolutionary adaptations for maintaining beneficial microbes are hallmarks of mutualistic evolution. Fungus-farming "attine" ant species have complex cuticular modifications and specialized glands that house and nourish antibiotic-producing Actinobacteria symbionts, which in turn protect their hosts' fungus gardens from pathogens. Here we reconstruct ant-Actinobacteria evolutionary history across the full range of variation within subtribe Attina by combining dated phylogenomic and ultramorphological analyses. Ancestral-state analyses indicate the ant-Actinobacteria symbiosis arose early in attine-ant evolution, a conclusion consistent with direct observations of Actinobacteria on fossil ants in Oligo-Miocene amber. qPCR indicates that the dominant ant-associated Actinobacteria belong to the genus Tracing the evolutionary trajectories of -maintaining mechanisms across attine ants reveals a continuum of adaptations. In species, which retain many ancestral morphological and behavioral traits, occur in specific locations on the legs and antennae, unassociated with any specialized structures. In contrast, specialized cuticular structures, including crypts and tubercles, evolved at least three times in derived attine-ant lineages. Conspicuous caste differences in -maintaining structures, in which specialized structures are present in worker ants and queens but reduced or lost in males, are consistent with vertical transmission. Although the majority of attine ants are associated with , there have been multiple losses of bacterial symbionts and bacteria-maintaining structures in different lineages over evolutionary time. The early origin of ant- mutualism and the multiple evolutionary convergences on strikingly similar anatomical adaptations for maintaining bacterial symbionts indicate that have played a critical role in the evolution of ant fungiculture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6196509PMC
http://dx.doi.org/10.1073/pnas.1809332115DOI Listing

Publication Analysis

Top Keywords

adaptations maintaining
8
attine ants
8
specialized structures
8
bacterial symbionts
8
structures
6
ants
5
evolutionary
5
convergent evolution
4
evolution complex
4
complex structures
4

Similar Publications

Fitness and adaptive evolution of a Rhodococcus sp. harboring dioxin-catabolic plasmids.

World J Microbiol Biotechnol

January 2025

Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, 72 Binhai Road, Jimo, Qingdao, 266237, China.

Catabolic plasmids are critical factors in the degradation of recalcitrant xenobiotics, such as dioxins. Understanding the persistence and evolution of native catabolic plasmids is pivotal for controlling their function in microbial remediation. Here, we track the fitness and evolution of Rhodococcus sp.

View Article and Find Full Text PDF

Hypothalamic neural circuits regulating energy expenditure.

Vitam Horm

January 2025

Lilly Diabetes Research Center, Indiana Biosciences Research Institute, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States. Electronic address:

The hypothalamus plays a central role in regulating energy expenditure and maintaining energy homeostasis, crucial for an organism's survival. Located in the ventral diencephalon, it is a dynamic and adaptable brain region capable of rapid responses to environmental changes, exhibiting high anatomical and cellular plasticity and integrates a myriad of sensory information, internal physiological cues, and humoral factors to accurately interpret the nutritional state and adjust food intake, thermogenesis, and energy homeostasis. Key hypothalamic nuclei contain distinct neuron populations that respond to hormonal, nutrient, and neural inputs and communicate extensively with peripheral organs like the gastrointestinal tract, liver, pancreas, and adipose tissues to regulate energy production, storage, mobilization, and utilization.

View Article and Find Full Text PDF

Early-Life Antibiotic Exposures: Paving the Pathway for Dysbiosis-Induced Disorders.

Eur J Pharmacol

January 2025

School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia. Electronic address:

Microbiota encompasses a diverse array of microorganisms inhabiting specific ecological niches. Gut microbiota significantly influences physiological processes, including gastrointestinal motor function, neuroendocrine signalling, and immune regulation. They play a crucial role in modulating the central nervous system and bolstering body defence mechanisms by influencing the proliferation and differentiation of innate and adaptive immune cells.

View Article and Find Full Text PDF

Introduction: Hispanic/Latinx (hereafter Hispanic) individuals who smoke have challenges in quitting and a disproportionate risk of smoking-related health problems when compared to the general population. The smoking inequalities among the Hispanic population are influenced by limited treatment access and chronic stress exposure (e.g.

View Article and Find Full Text PDF

Autophagic flux measurement: Cargo degradation versus generation of degradation products.

Curr Opin Cell Biol

January 2025

Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan. Electronic address:

Autophagy is the cellular processes that transport cytoplasmic components to lysosomes for degradation. It plays essential physiological roles, including in adaptation to environmental changes such as starvation and maintaining intracellular quality control. Recently, its links to aging and disease have garnered substantial attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!