Ferredoxin-thioredoxin reductase (FTR), an enzyme involved in the light regulation of chloroplast enzymes, was purified to homogeneity from leaves of spinach (a C3 plant) and corn (a C4 plant) and from cells of a cyanobacterium (Nostoc muscorum). The enzyme is a yellowish brown iron-sulfur protein, containing four nonheme iron and labile sulfide groups, that catalyzes the activation of NADP-malate dehydrogenase and fructose 1,6-bisphosphatase in the presence of ferredoxin and of thioredoxin m and f, respectively. FTR is synonymous with the protein earlier called ferralterin. FTR showed an Mr of about 30,000 (determined by sedimentation equilibrium ultracentrifugation, amino acid composition, gel filtration, and gradient gel electrophoresis) and was composed of two dissimilar subunits (as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). One of the FTR subunits from each source was similar both in Mr (about 13,000) and immunological properties, while the other subunit (of variable molecular weight) was characteristic of a particular organism. The similar subunit contained a disulfide group that was rapidly reduced by a dithiol (dithiothreitol) but not by monothiols (2-mercaptoethanol or reduced glutathione). Homogeneous FTR formed a tight noncovalent complex with ferredoxin on affinity columns. The basis for the structural variation in the different FTR enzymes remains to be determined.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0003-9861(87)90049-x | DOI Listing |
Heliyon
September 2024
Department of Agriculture and Animal Health, Florida Science Campus, University of South Africa, Johannesburg, Gauteng Province, South Africa.
Soybean ( L.) serves not only as food for humans, animals, and industrial purposes, but is also a plant that can be used to comprehend molecular mechanisms occurring in stress response to various development techniques. To reveal the effect of applying dicarboxylic acids as stress priming agents on a metabolic level in soybean leaf extracts, the chemical profile of methanolic extracts were collected at different time points (1 h, 2 h, 12 h, 24 h, 1 week, 2 weeks and 3 weeks) after spraying were analyzed using H-NMR based metabolomics by way of PCA and OPLS-DA.
View Article and Find Full Text PDFBiochemistry
June 2024
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
Thioredoxin reductases (TrxR) activate thioredoxins (Trx) that regulate the activity of diverse target proteins essential to prokaryotic and eukaryotic life. However, very little is understood of TrxR/Trx systems and redox control in methanogenic microbes from the domain (methanogens), for which genomes are abundant with annotations for ferredoxin:thioredoxin reductases [Fdx/thioredoxin reductase (FTR)] from group 4 of the widespread FTR-like family. Only two from the FTR-like family are characterized: the plant-type FTR from group 1 and FDR from group 6.
View Article and Find Full Text PDFEcotoxicol Environ Saf
June 2024
Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China. Electronic address:
The biogenic synthesis of silver nanoparticles (AgNPs) by microorganisms has been a subject of increasing attention. Despite extensive studies on this biosynthetic pathway, the mechanisms underlying the involvement of proteins and enzymes in AgNPs production have not been fully explored. Herein, we reported that Burkholderia contaminans ZCC was able to reduce Ag to AgNPs with a diameter of (10±5) nm inside the cell.
View Article and Find Full Text PDFFunct Plant Biol
March 2024
Department of Agricultural Biotechnology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
Due to global warming and changes in precipitation patterns, many regions are prone to permanent drought. Rapeseed (Brassica napus ) is one of the main sources of edible oils worldwide, and its production and yield are affected by drought. In this study, gene expression alterations under drought stress are investigated with bioinformatics studies to examine evolutionary relations of conserved motifs structure and interactions among Calvin cycle and photorespiration pathways key genes in drought-tolerant (SLM046) and drought-sensitive (Hayola308) genotypes of rapeseed.
View Article and Find Full Text PDFPlant Cell Physiol
May 2024
Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501 Japan.
Various chloroplast proteins are activated/deactivated during the light/dark cycle via the redox regulation system. Although the photosynthetic electron transport chain provides reducing power to redox-sensitive proteins via the ferredoxin (Fd)/thioredoxin (Trx) pathway for their enzymatic activity control, how the redox states of individual proteins are linked to electron transport efficiency remains uncharacterized. Here we addressed this subject with a focus on the photosynthetic induction phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!