Chagas disease and Human African trypanosomiasis (HAT) are important public health issues in Latin American and sub-Saharan African countries, respectively, and are responsible for a significant number of deaths. The drugs currently used to treat Chagas disease and HAT present efficacy, toxicity, and/or resistance issues; thus, there is a clear need for the discovery of novel targets and drug candidates to combat these diseases. In recent years, much effort has been made to find inhibitors of cruzain and rhodesain, which are promising targets for the design of novel trypanocidal compounds, since they are essential for parasite survival. Many reviews covering the design of novel cruzain and rhodesain inhibitors have been published; however, none have focused on the chemistry of the inhibitors. Thus, in the present work we reviewed the synthetic strategies and routes for the preparation of relevant classes of cruzain and rhodesain inhibitors. Perhaps the most important are the vinyl sulfone derivatives, and a very efficient synthetic strategy based on the Horner-Wadsworth-Emmons reaction was developed to yield these compounds. Modern approaches such as the asymmetric addition of substituted ethynyllithium to N-sulfinyl ketimines were used to produce the chiral alkynes that were employed in the preparation of important chiral triazole derivatives (potent cruzain inhibitors) and chiral HPLC resolution was used for the preparation of enantiopure 3-bromoisoxazoline derivatives (rhodesain inhibitors). Moreover, we also highlight the most important activity results and updated SAR results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2018.08.079 | DOI Listing |
An Acad Bras Cienc
May 2024
Universidade Federal do Mato Grosso do Sul - UFMS, Instituto de Química, Av. Senador Filinto Müller, 1555, Cidade Universitária, 79074-460 Campo Grande, MS, Brazil.
In pursuit of potential agents to treat Chagas disease and leishmaniasis, we report the design, synthesis, and identification novel naphthoquinone hydrazide-based molecular hybrids. The compounds were subjected to in vitro trypanocide and leishmanicidal activities. N'-(1,4-Dioxo-1,4-dihydronaphthalen-2-yl)-3,5-dimethoxybenzohydrazide (13) showed the best performance against Trypanosoma cruzi (IC50 1.
View Article and Find Full Text PDFCurr Med Chem
May 2024
Pharma Research and Early Development pRED, Roche Innovation Center Basel, Medicinal Chemistry, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, CH-4070, Switzerland.
Background: Neglected tropical diseases are a severe burden for mankind, affecting an increasing number of people around the globe. Many of those diseases are caused by protozoan parasites in which cysteine proteases play a key role in the parasite's pathogenesis.
Objective: In this review article, we summarize the drug discovery efforts of the research community from 2017 - 2022 with a special focus on the optimization of small molecule cysteine protease inhibitors in terms of selectivity profiles or drug-like properties as well as in vivo studies.
Mini Rev Med Chem
July 2024
Department of Pharmacy, Drug Development and Synthesis Laboratory, State University of Paraíba, Campina Grande, 58429-500, Brazil.
A large family of enzymes with the function of hydrolyzing peptide bonds, called peptidases or cysteine proteases (CPs), are divided into three categories according to the peptide chain involved. CPs catalyze the hydrolysis of amide, ester, thiol ester, and thioester peptide bonds. They can be divided into several groups, such as papain-like (CA), viral chymotrypsin-like CPs (CB), papainlike endopeptidases of RNA viruses (CC), legumain-type caspases (CD), and showing active residues of His, Glu/Asp, Gln, Cys (CE).
View Article and Find Full Text PDFBackground: Trypanosomiasis, caused by protozoan parasites of the genus, remains a significant health burden in several regions of the world. Cysteine proteases play a crucial role in the pathogenesis of parasites and have emerged as potential therapeutic targets for the development of novel antiparasitic drugs.
Introduction: This review article aims to provide a comprehensive overview of the role of cysteine proteases in trypanosomiasis and their potential as therapeutic targets.
Mol Divers
April 2024
Leicester School of Allied Health Sciences, Faculty of Health and Life Sciences, de Montfort University, Leicester, UK.
Virtual screening a collection of ~ 25,000 ChemBridge molecule collection identified two nitrogenous heterocyclic molecules, 12 and 15, with potential dual inhibitory properties against trypanosomal cruzain and rhodesain cysteine proteases. Similarity search in DrugBank found the two virtual hits with novel chemical structures with unreported anti-trypanosomal activities. Investigations into the binding mechanism by molecular dynamics simulations for 100 ns revealed the molecules were able to occupy the binding sites and stabilise the protease complexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!