Once activated by double-helical RNA, mammalian RNA-dependent stress protein kinase, PKR, phosphorylates its substrate, translation initiation factor eIF2α, to inhibit translation. eIF2α phosphorylation is critical for mounting a cellular stress response. We describe short, 100-200 nucleotide elements within cellular genes that, once transcribed, form RNA structures that potently activate PKR in the vicinity of the RNA and thereby tightly regulate gene expression in cis. Intragenic RNA activators of PKR can (a) attenuate translation of the encoded mRNA by activating PKR and inducing eIF2α phosphorylation, exemplified by the IFN-γ gene, or (b) greatly enhance mRNA splicing efficiency by activating PKR and inducing nuclear eIF2α phosphorylation, thus enabling efficient early spliceosome assembly, exemplified by the adult and fetal globin genes and the TNF-α gene that activates PKR through an RNA pseudoknot conserved from fish to humans. These opposite outcomes considerably extend the potential scope of gene regulation by these novel RNA elements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2018.09.021 | DOI Listing |
Mol Ther
January 2025
Department of Orthopaedic surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a crucial signaling adaptor involved in multiple cellular events. However, its role in regulating osteoclastogenesis and energy metabolism remains unclear. Here, we report that TRAF1 promotes osteoclastogenesis and oxidative phosphorylation (OXPHOS).
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, USA.
Nowadays, chemotherapy and immunotherapy remain the major treatment strategies for Triple-Negative Breast Cancer (TNBC). Identifying biomarkers to pre-select and subclassify TNBC patients with distinct chemotherapy responses is essential. In the current study, we performed an unbiased Reverse Phase Protein Array (RPPA) on TNBC cells treated with chemotherapy compounds and found a leading significant increase of phosphor-AURKA/B/C, AURKA, AURKB, and PLK1, which fall into the mitotic kinase group.
View Article and Find Full Text PDFOncogene
January 2025
Department of Gastroenterology, Endocrinology and Metabolism, Center for Tumor and Immune Biology, Philipps University Marburg, Marburg, Germany.
The development of resistance remains one of the biggest challenges in clinical cancer patient care and it comprises all treatment modalities from chemotherapy to targeted or immune therapy. In solid malignancies, drug resistance is the result of adaptive processes occurring in cancer cells or the surrounding tumor microenvironment (TME). Future therapy attempts will therefore benefit from targeting both, tumor and stroma compartments and drug targets which affect both sides will be highly appreciated.
View Article and Find Full Text PDFSci Rep
January 2025
Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!