Metabolic control analysis (MCA) is a promising approach in biochemistry aimed at understanding processes in a quantitative fashion. Here the contribution of enzymes and transporters to the control of a given pathway flux and metabolite concentrations is determined and expressed quantitatively by means of numerical coefficients. Metabolic flux can be influenced by a wide variety of modulators acting on one or more metabolic steps along the pathway. We describe a laboratory exercise to study metabolic regulation of human erythrocytes (RBCs). Within the framework of MCA, students use these cells to determine the sensitivity of the glycolytic flux to two inhibitors (iodoacetic acid: IA, and iodoacetamide: IAA) known to act on the enzyme glyceraldehyde-3-phosphate-dehydrogenase. Glycolytic flux was estimated by determining the concentration of extracellular lactate, the end product of RBC glycolysis. A low-cost colorimetric assay was implemented, that takes advantage of the straightforward quantification of the absorbance signal from the photographic image of the multi-well plate taken with a standard digital camera. Students estimate flux response coefficients for each inhibitor by fitting an empirical function to the experimental data, followed by analytical derivation of this function. IA and IAA exhibit qualitatively different patterns, which are thoroughly analyzed in terms of the physicochemical properties influencing their action on the target enzyme. IA causes highest glycolytic flux inhibition at lower concentration than IAA. This work illustrates the feasibility of using the MCA approach to study key variables of a simple metabolic system, in the context of an upper level biochemistry course. © 2018 International Union of Biochemistry and Molecular Biology, 46(5):502-515, 2018.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bmb.21139DOI Listing

Publication Analysis

Top Keywords

glycolytic flux
12
metabolic control
8
control analysis
8
metabolic
6
flux
6
analysis approach
4
approach introduce
4
introduce study
4
study systems
4
biochemistry
4

Similar Publications

PEROXYNITRITE IS INVOLVED IN THE MITOCHONDRIAL DYSFUNCTION INDUCED BY SORAFENIB IN LIVER CANCER CELLS.

Free Radic Biol Med

December 2024

Institute of Biomedicine of Seville (IBiS), Hospital University "Virgen del Rocío"/CSIC/University of Seville, Seville, Spain; Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain; Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain. Electronic address:

Background: Sorafenib is a tyrosine kinase inhibitor (TKI) that belongs to the landscape of treatments for advanced stages of hepatocellular carcinoma (HCC). The induction of cell death and cell cycle arrest by Sorafenib has been associated with mitochondrial dysfunction in liver cancer cells. Our research aim was to decipher underlying oxidative and nitrosative stress induced by Sorafenib leading to mitochondrial dysfunction in liver cancer cells.

View Article and Find Full Text PDF

Engineering glycolytic pathway for improved Lacto-N-neotetraose production in pichia pastoris.

Enzyme Microb Technol

December 2024

Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China. Electronic address:

Lacto-N-neotetraose (LNnT) is a primary solid component of human milk oligosaccharides (HMOs) with various promising health effects for infants. LNnT production by GRAS (generally recognized as safe) microorganisms has attracted considerable attention. However, few studies have emphasized Pichia Pastoris as a cell factory for LNnT's production.

View Article and Find Full Text PDF

Pleozymes: Pleiotropic Oxidized Carbon Nanozymes Enhance Cellular Metabolic Flexibility.

Nanomaterials (Basel)

December 2024

Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.

Our group has synthesized a pleiotropic synthetic nanozyme redox mediator we term a "pleozyme" that displays multiple enzymatic characteristics, including acting as a superoxide dismutase mimetic, oxidizing NADH to NAD, and oxidizing HS to polysulfides and thiosulfate. Benefits have been seen in acute and chronic neurological disease models. The molecule is sourced from coconut-derived activated charcoal that has undergone harsh oxidization with fuming nitric acid, which alters the structure and chemical characteristics, yielding 3-8 nm discs with broad redox potential.

View Article and Find Full Text PDF

Brain metabolism across anatomic regions and cellular compartments plays an integral role in many aspects of neuronal function. Changes in key metabolic pathway fluxes, including oxidative and reductive energy metabolism, have been implicated in a wide range of brain diseases. Given the complex nature of the brain and the need for understanding compartmentalized metabolism noninvasively in vivo, new tools are required.

View Article and Find Full Text PDF

Background: Hepatic organoids (HOs), validated through comparative sequencing with human liver tissues, are reliable models for liver research. Comprehensive transcriptomic and proteomic sequencing of HOs throughout their induction period will enhance the platform's utility, aiding in the elucidation of liver development's molecular mechanisms.

Methods: We developed hepatic organoids (HOs) from embryonic stem cells (ESCs) through a de novo induction protocol, mimicking the stages of fetal liver development: ESCs to definitive endoderm (DE), then to foregut (FG), hepatoblasts (HB), and finally to HOs stage 1 (HO1), culminating in self-organizing HOs stage 2 (HO2) via dissociation and re-inoculation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!