CdSe/CdS Dot-in-Rods Nanocrystals Fast Blinking Dynamics.

Chemphyschem

Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, 4, place Jussieu Case 74, F-75005, Paris, France.

Published: October 2018

Analyzing the autocorrelation function of the fluorescence intensity, we demonstrate that these nanoemitters are characterized by a short value of the mean duration of bright periods (ten to a few hundreds of microseconds). The comparison of the results obtained for samples with different geometries shows that not only the shell thickness is crucial but also the shape of the dot-in-rods. Increasing the shell aspect ratio results in shorter bright periods suggesting that surface traps impact the stability of the fluorescence intensity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201800694DOI Listing

Publication Analysis

Top Keywords

fluorescence intensity
8
bright periods
8
cdse/cds dot-in-rods
4
dot-in-rods nanocrystals
4
nanocrystals fast
4
fast blinking
4
blinking dynamics
4
dynamics analyzing
4
analyzing autocorrelation
4
autocorrelation function
4

Similar Publications

The fluorescent imaging of pathologically accumulated β-amyloid (Aβ) proteins is of significant importance to the diagnosis of Alzheimer's disease (AD). In the paper, we prepared two new NIR probes, NIR-1 and NIR-2, through hydrophilic modification of introducing water-soluble bioactive groups such as polyethylene glycol (PEG) and morpholine to tune in vivo pharmacokinetics for specific detection of soluble and insoluble Aβ species. The in vitro assessments confirm that both NIR-1 and NIR-2 display strong near-infrared (NIR) fluorescence (FL) enhancement upon association with Aβ42 monomers, oligomers or aggregates (λem > 670 nm) and show high sensitive, rapid and selective response towards Aβ42 species.

View Article and Find Full Text PDF

Designing Fluorescent Interfaces at Hotspots in a Plasmonic Nanopore for Homologous Optoelectronic Sensing.

Small

January 2025

Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.

In this work, a site-selective functionalization strategy is proposed for modifying fluorescent dyes in the plasmonic nanopore, which highlights building optoelectronic dual-signal sensing interfaces at "hotspots" locations to construct multiparameter detection nanosensor. Finite-difference time-domain (FDTD) simulations confirmed the high-intensity electromagnetic field due to plasmonic nanostructure. It is demonstrated that adjusting the distance between the nanopore inner wall and fluorophore prevented the fluorescence quenching, resulting in more than a thirty fold fluorescence enhancement.

View Article and Find Full Text PDF

Lipophilic molecular rotor to assess the viscosity of oil core in nano-emulsion droplets.

Soft Matter

January 2025

INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France.

Characterization of nanoscale formulations is a continuous challenge. Size, morphology and surface properties are the most common characterizations. However, physicochemical properties inside the nanoparticles, like viscosity, cannot be directly measured.

View Article and Find Full Text PDF

This study investigates the structure-property relationships of a series of phenylhydrazones bearing various electron-donating and electron-withdrawing substituents, such as methoxy, dimethylamino, morpholinyl, hydroxyl, chloro, bromo, and nitro groups. The compounds were synthesized, and their structures were characterized using single-crystal X-ray diffraction, powder X-ray diffraction, FTIR spectroscopy, NMR spectroscopy, and DSC. Three-dimensional excitation-emission matrix (3D-EEM) fluorescence spectroscopy and UV-Vis spectroscopy were employed to elucidate the complex interplay between the molecular skeleton, substituents, and the resulting photophysical properties.

View Article and Find Full Text PDF

Background: Clonal mature B-cell lymphoproliferative disorders (B-LPDs) are a heterogeneous group of neoplasia characterized by the proliferation of mature B lymphocytes in the peripheral blood, bone marrow and/or lymphoid tissues. B-LPDs classification into different subtypes and their diagnosis is based on a multiparametric approach. However, accurate diagnosis may be challenging, especially in cases of ambiguous interpretation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!