The frequency architecture of brain and brain body oscillations: an analysis.

Eur J Neurosci

Centre of Cognitive Neuroscience, University of Salzburg, Salzburg, Austria.

Published: October 2018

Research on brain oscillations has brought up a picture of coupled oscillators. Some of the most important questions that will be analyzed are, how many frequencies are there, what are the coupling principles, what their functional meaning is, and whether body oscillations follow similar coupling principles. It is argued that physiologically, two basic coupling principles govern brain as well as body oscillations: (i) amplitude (envelope) modulation between any frequencies m and n, where the phase of the slower frequency m modulates the envelope of the faster frequency n, and (ii) phase coupling between m and n, where the frequency of n is a harmonic multiple of m. An analysis of the center frequency of traditional frequency bands and their coupling principles suggest a binary hierarchy of frequencies. This principle leads to the foundation of the binary hierarchy brain body oscillation theory. Its central hypotheses are that the frequencies of body oscillations can be predicted from brain oscillations and that brain and body oscillations are aligned to each other. The empirical evaluation of the predicted frequencies for body oscillations is discussed on the basis of findings for heart rate, heart rate variability, breathing frequencies, fluctuations in the BOLD signal, and other body oscillations. The conclusion is that brain and many body oscillations can be described by a single system, where the cross talk - reflecting communication - within and between brain and body oscillations is governed by m : n phase to envelope and phase to phase coupling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668003PMC
http://dx.doi.org/10.1111/ejn.14192DOI Listing

Publication Analysis

Top Keywords

body oscillations
36
brain body
20
coupling principles
16
oscillations
11
body
10
brain
9
brain oscillations
8
phase coupling
8
binary hierarchy
8
frequencies body
8

Similar Publications

The COVID-19 pandemic and increased demands for neurologists have inspired the creation of remote, digitalized tests of neurological functions. This study investigates two tests from the Neurological Functional Tests Suite (NeuFun-TS) smartphone application, the "Postural Sway" and "Pronator Drift" tests. These tests capture different domains of postural control and motoric dysfunction in healthy volunteers (n=13) and people with neurological disorders (n=68 relapsing-remitting multiple sclerosis [MS]; n=21 secondary progressive MS; n=23 primary progressive MS; n=13 other inflammatory neurological diseases; n=21 non-inflammatory neurological diseases; n=4 clinically isolated syndrome; n=1 radiologically isolated syndrome).

View Article and Find Full Text PDF

Autonomous Sensory Meridian Response (ASMR) is an audio-visual phenomenon that has recently become popular. Many people have reported experiencing a tingling-like sensation through their body while watching audio/video clips known as ASMR clips. People capable of having such experiences have also reported improved overall well-being and feeling relaxed.

View Article and Find Full Text PDF

Humans sometimes synchronize their steps to mechanical oscillations in the environment (e.g., when walking on a swaying bridge or with a wearable robot).

View Article and Find Full Text PDF

Impaired walking ability and leg health are commonly seen in broilers and can negatively impact their welfare. Commonly, walking ability and leg health are assessed manually, but this is time consuming and can be subjective. Automated approaches for scoring walking ability and leg health at the individual level could therefore have great added value.

View Article and Find Full Text PDF

A brief introduction to the diffusion Monte Carlo method and the fixed-node approximation.

J Chem Phys

December 2024

Dipartimento di Fisica Ettore Pancini, Università di Napoli Federico II, Monte S. Angelo, I-80126 Napoli, Italy.

Quantum Monte Carlo (QMC) methods represent a powerful family of computational techniques for tackling complex quantum many-body problems and performing calculations of stationary state properties. QMC is among the most accurate and powerful approaches to the study of electronic structure, but its application is often hindered by a steep learning curve; hence it is rarely addressed in undergraduate and postgraduate classes. This tutorial is a step toward filling this gap.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!